
Theoretically and Practically Efficient Maximum Defective
Clique Search
QIANGQIANG DAI, Beijing Institute of Technology, China

RONG-HUA LI, Beijing Institute of Technology, China
DONGHANG CUI, Beijing Institute of Technology, China

GUOREN WANG, Beijing Institute of Technology, China

The study of 𝑘-defective cliques, defined as induced subgraphs that differ from cliques by at most 𝑘 missing

edges, has attracted much attention in graph analysis due to their relevance in various applications, including

social network analysis and implicit interaction predictions. However, determining the maximum 𝑘-defective

clique in graphs has been proven to be an NP-hard problem, presenting significant challenges in finding

an efficient solution. To address this problem, we develop a theoretically and practically efficient algorithm

that leverages newly-designed branch reduction rules and a pivot-based branching technique. Our analysis

establishes that the time complexity of the proposed algorithm is bounded by𝑂 (𝑚𝛾𝑛
𝑘
), where 𝛾𝑘 is a real value

strictly less than 2 (e.g., when 𝑘 = 1, 2, and 3, 𝛾𝑘 = 1.466, 1.755, and 1.889, respectively). To our knowledge,

this algorithm achieves the best worst-case time complexity to date compared to state-of-the-art solutions.

Moreover, to further reduce unnecessary branches, we propose a time-efficient upper bound-based pruning

technique, which is obtained by manipulating information such as the number of distinct colors assigned

to vertices and the presence of non-neighbors among them. Additionally, we employ an ordering-based

heuristic approach as a preprocessing step to improve computational efficiency. Finally, we conduct extensive

experiments on a diverse set of over 300 graphs to evaluate the efficiency of the proposed solutions. The

results demonstrate that our algorithm achieves a speedup of 3 orders of magnitude over state-of-the-art

solutions in processing most of real-world graphs.

CCS Concepts: • Theory of computation→ Branch-and-bound.

Additional Key Words and Phrases: Cohesive subgraph search, 𝑘-Defective clique, Branch-and-bound

ACM Reference Format:
Qiangqiang Dai, Rong-Hua Li, Donghang Cui, and Guoren Wang. 2024. Theoretically and Practically Efficient

Maximum Defective Clique Search. Proc. ACM Manag. Data 2, 4 (SIGMOD), Article 206 (September 2024),

27 pages. https://doi.org/10.1145/3677142

1 Introduction
Graph has emerged as a versatile model for representing diverse real-world networks, including

social networks [2], web networks [24], biological networks [46], and others. The task of identifying

cohesive subgraphs from these networks is a fundamental problem in graph analysis, with broad

applications in various domains. For instance, community detection in social networks [5, 15],

identification of protein complexes in protein-protein interaction (PPI) networks [60, 63], and

Authors’ Contact Information: Qiangqiang Dai, qiangd66@gmail.com, Beijing Institute of Technology, Beijing, China; Rong-

Hua Li, lironghuabit@126.com, Beijing Institute of Technology, Beijing, China; Donghang Cui, cuidonghang@bit.edu.cn,

Beijing Institute of Technology, Beijing, China; Guoren Wang, wanggrbit@126.com, Beijing Institute of Technology, Beijing,

China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/9-ART206

https://doi.org/10.1145/3677142

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

HTTPS://ORCID.ORG/0000-0002-8569-6558
HTTPS://ORCID.ORG/0000-0001-8658-6599
HTTPS://ORCID.ORG/0009-0004-4519-6227
HTTPS://ORCID.ORG/0000-0002-0181-8379
https://doi.org/10.1145/3677142
https://orcid.org/0000-0002-8569-6558
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0009-0004-4519-6227
https://orcid.org/0000-0002-0181-8379
https://doi.org/10.1145/3677142

206:2 Qiangqiang Dai, Rong-Hua Li, Donghang Cui, & Guoren Wang

statistical analysis in financial networks [6, 7] all can be formulated as cohesive subgraph mining

problems. Perhaps, the classical clique [33], which requires every pair of vertices associated with

an edge, is a commonly-used cohesive subgraph model, as extensively advanced solutions have

been proposed in the literature [9, 16, 39, 56].

In real-world applications, it is often too restrictive to mandate the presence of all possible

relationships within a community. This is due to the fact that a subgraph missing certain edges can

still effectively represent a community [45]. Moreover, real-world networks often involve noise or

faults during data collection through experiments or automated sensors [1]. To address this issue,

several relaxed clique models have also been extensively studied [45], including the 𝑘-plex [52],

quasi-clique [31], 𝑟 -clique [32], 𝑘-club [37], 𝑘-defective clique [63], and others.

In this paper, we primarily focus on the concept of the 𝑘-defective clique, which is defined as

a subgraph 𝐺 (𝑆) induced by the subset 𝑆 of the graph 𝐺 = (𝑉 , 𝐸), such that it contains at least(|𝑆 |
2

)
− 𝑘 edges. This notion was originally introduced in [63] and has proven to be valuable in

predicting implicit interactions among proteins in biological networks. The rationale behind this

concept is that the missing edges within the 𝑘-defective clique can be seen as indicative of implicit

interactions between proteins. Due to the practical relevance to various real-world applications,

including community detection in social networks [21, 44] and statistical analysis in financial

networks [14], as well as its close relationship with other cohesive subgraph models, such as the

clique [33] and 𝑘-plex [52], the maximum 𝑘-defective clique problem, which involves identifying a

𝑘-defective clique with the largest cardinality among all 𝑘-defective cliques in a given graph𝐺 , has

recently received significant interest [11, 13, 19, 20, 57].

As shown in [57, 62], the problem of identifying the maximum 𝑘-defective clique of a given

graph𝐺 is NP-hard, thereby establishing the infeasibility of a polynomial-time algorithm unless

NP=P. To our knowledge, there are a number of solutions that address this challenging problem

[11, 13, 19, 20, 57]. Specifically, Trukhanov et al. [57] pioneer an exact algorithm for the maximum

𝑘-defective clique problem based on the Russian doll search technique [59]. Building upon their

work, Gschwinda et al. [20] improve this algorithm by employing new preprocessing methods

and an optimized implementation. Furthermore, several new algorithms [11, 13, 19], based on a

branch-and-bound search technique [25], have also emerged to improve efficiency. Notably, Chen

et al. [13] introduce a new branching rule that prioritizes vertices with non-neighbors in the current

𝑘-defective clique during the branch-and-bound process. The authors establish that the worst-case

time complexity of this technique, used for identifying the maximum 𝑘-defective clique, is bounded

by 𝑂 (𝑃 (𝑛)𝛼𝑛
𝑘
), where 𝑛 is the number of vertices in the graph 𝐺 , 𝑃 (𝑛) is a polynomial function

dependent on 𝑛, and 𝛼𝑘 is a real-number less than 2. To achieve a better practical efficiency, Gao et

al. [19] present an improved branch-and-bound algorithm based on several new branch pruning

techniques. More recently, a faster algorithm based on a non-fully-adjacent-first branching rule

and several reduction rules is developed in [11]. The author shows that the time complexity of

this algorithm can be tightened to 𝑂 (𝑃 (𝑛)𝛽𝑛
𝑘
), where 𝛽𝑘 is a real-number smaller than 𝛼𝑘 for every

𝑘 ≥ 1. To our knowledge, the algorithm developed in [11] represents currently the most advanced

solution to the problem of identifying the maximum 𝑘-defective cliques, both in theoretical and

practical terms.

However, these existing solutions still exhibit several noteworthy issues. Firstly, the practical

performance remains prohibitively expensive when processing real-world graphs. This issue pri-

marily stems from the insufficient tightening of the upper bound-based pruning techniques and

inefficient of the branching rules employed in these existing solutions. Specifically, the presence of

overly loose upper bounds often hinders the timely termination of the branch-and-bound process.

Moreover, the inefficient branching rules lead to a proliferation of duplicate results, resulting in

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

Theoretically and Practically Efficient Maximum Defective Clique Search 206:3

Table 1. Summary of different algorithms

Algorithms Times 𝑘 = 1 2 3 4 ...

RDS [57], KDBB [19] 𝑂 (𝑃 (𝑛)2𝑛) – – – – – ...

MADEC [13] 𝑂 (𝑃 (𝑛)𝛼𝑛
𝑘
) 𝛼𝑘 = 1.928 1.984 1.996 1.999 ...

kDC [11] 𝑂 (𝑃 (𝑛)𝛽𝑛
𝑘
) 𝛽𝑘 = 1.839 1.928 1.966 1.984 ...

MDC (Ours) 𝑂 (𝑚𝛾𝑛
𝑘
) 𝛾𝑘 = 1.466 1.755 1.889 1.948 ...

numerous unnecessary computations within these existing algorithms. Secondly, the theoretical

time complexity has not been sufficiently optimized. It is noteworthy that many existing solutions

[19, 20, 57] still have a worst-case time complexity of 𝑂 (𝑃 (𝑛)2𝑛), with only approaches [11, 13]

achieving a worst-case time complexity of𝑂 (𝑃 (𝑛)𝛼𝑛
𝑘
), where 𝛼𝑘 < 2. However, the value of 𝛼𝑘 is of

close to 2 for these solutions to find the maximum 𝑘-defective clique in graph𝐺 , even for relatively

small values of 𝑘 . For instance, as reported in [11], when 𝑘 = 1 and 2, the respective values of 𝛼𝑘
are 1.839 and 1.928, respectively.

It is important to emphasize that efficient algorithms for identifying the maximum 𝑘-defective

clique within a given graph𝐺 are very beneficial for graph data mining and management tasks. For

instance, in domains like social network analysis, the utilization of efficient algorithms not only

leads to significant reductions in computation time but also minimizes system cost requirements.

This enables swift decision-making and optimization for tasks like personalized recommendations,

social advertising, and user relationship management. Consequently, there is an urgent demand

for developing more efficient algorithms that can effectively identify the maximum 𝑘-defective

clique in real-world graphs. Addressing this demand is essential for overcoming graph data mining

and management challenges across diverse fields, including social network analysis [21, 44] and

protein complex discovery [63].

Contribution. To address aforementioned issues, in this paper we extensively investigate the

problem of finding maximum 𝑘-defective clique of a given graph 𝐺 , and develop a novel algorithm

that combines both theoretical advancements and practical efficiency. The main contributions are

summarized below.

A novel search framework. To identify the maximum 𝑘-defective clique of𝐺 , we develop an elegant

search framework, which mainly combines two newly-developed branching rules. These rules

ensure the framework’s effectiveness in reducing search space. Firstly, if there exists a vertex

with at most three non-neighbors within the search space, we employ the newly-proposed branch

reduction rules. Secondly, for cases where no such vertex exists, we further utilize a newly pivot-

based branching rule to significantly reduce redundant branches. It is worth mentioning that we

prove that the time complexity of our framework is bounded by 𝑂 (𝑚𝛾𝑛
𝑘
), where 𝛾𝑘 takes the value

of 1.414 if 𝑘 = 0, or the maximum real-root of 𝑥𝑘+3 − 2𝑥𝑘+2 + 𝑥2 − 𝑥 + 1 = 0 if 𝑘 ≥ 1. For example,

when 𝑘 = 1, 2, and 3, the corresponding values of 𝛾𝑘 are 1.466, 1.755, and 1.889, respectively (details

in Table 1). To the best of our knowledge, our framework represents the most advanced solution in

terms of worst-case time complexity.

New optimization techniques. To further improve the efficiency of the proposed framework, we

develop a set of optimization techniques. These include upper bound-based pruning and an ordering-

based heuristic approach. We show that the size of the maximum 𝑘-defective clique in a graph 𝐺

can be effectively bounded by considering several essential factors, such as the vertex degree, core

number [51], and number of distinct colors present in 𝐺 . Moreover, we observe that the proposed

color-based upper bound can be tightened by further considering the presence of non-neighbors

among vertices. Leveraging these observations, we develop a highly efficient pruning technique

with a time complexity of 𝑂 (𝑘𝑛 +𝑚), where 𝑛 and𝑚 are the number of vertices and missing edges

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

206:4 Qiangqiang Dai, Rong-Hua Li, Donghang Cui, & Guoren Wang

Table 2. Frequently-used notations

Notations Descriptions

𝐺 = (𝑉 , 𝐸) The undirected and unweighted graph.

𝑁𝑣 (𝐺), 𝑁 𝑣 (𝐺) The set of neighbors, non-neighbors of the vertex 𝑣 in 𝐺 .

𝑑𝑣 (𝐺), 𝑑𝑣 (𝐺) The degree of the vertex 𝑣 in 𝐺 , and the cardinality of 𝑁 𝑣 (𝐺).
𝐺 (𝑆) = (𝑆, 𝐸𝑆) The subgraph of 𝐺 induced by set 𝑆 .

𝑐𝑜𝑟𝑒𝑣 (𝐺) The core number of 𝑣 in 𝐺 .

𝜅, 𝜅 (𝐶) The size of the maximum 𝑘-defective clique in 𝐺 and 𝐺 (𝐶)
𝜔 , 𝜔 (𝐶) The number of distinct colors in 𝐺 and 𝐺 (𝐶)
𝛿 The maximum core number in 𝐺 .

𝑐𝑜𝑙𝑣 (𝐺) The color number assigned to 𝑣 in 𝐺 .

𝑐𝑣 (𝐺) The count of other vertices in 𝐺 with the same color as 𝑣 .

in 𝐺 , respectively. In addition to the pruning technique, we also present a novel ordering-based

heuristic algorithm. This algorithm functions as a preprocessing step, allowing us to identify a

near-maximum 𝑘-defective clique and greatly reduce unnecessary vertices in 𝐺 .

Extensive experiments.We construct extensive experiments to evaluate the efficiency of the proposed

algorithms on three distinct sets of datasets with a total of 337 graphs. The experimental results

demonstrate that our algorithms substantially outperform the state-of-the-art algorithms in identi-

fying the maximum 𝑘-defective clique by up to 3 orders of magnitude on most of real-world graphs.

For example, on the sc-ldoor dataset (with 21 million edges), our algorithm takes less than 10 seconds

to identify the maximum 𝑘-defective clique when 𝑘 = 1. In contrast, all existing state-of-the-art algo-

rithms failed to terminate within 3 hours under identical conditions. To ensure reproducibility, we

make the source code of this work available at https://github.com/dawhc/MaximumDefectiveClique.

2 Problem Definition
Consider an undirected and unweighted graph 𝐺 = (𝑉 , 𝐸), where 𝑉 and 𝐸 represent the sets of

vertices and edges of the graph 𝐺 , respectively. Let 𝑛 = |𝑉 | and𝑚 = |𝐸 | denote the number of

vertices and edges in𝐺 , respectively. For a vertex 𝑣 of𝐺 , we define 𝑁𝑣 (𝐺) as the set of neighbors of 𝑣
in𝐺 , i.e.,𝑁𝑣 (𝐺) = {𝑢 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐸}. The degree of 𝑣 in𝐺 is denoted as𝑑𝑣 (𝐺) = |𝑁𝑣 (𝐺) |. Similarity,

we refer to the set of non-neighbors of 𝑣 in𝐺 as 𝑁 𝑣 (𝐺) = 𝑉 \𝑁𝑣 (𝐺), and the cardinality of 𝑁 𝑣 (𝐺) as
𝑑𝑣 (𝐺) = |𝑁 𝑣 (𝐺) |. Given a vertex subset 𝑆 of𝐺 , we let𝐺 (𝑆) = (𝑆, 𝐸𝑆) be the subgraph of𝐺 induced

by the subset 𝑆 , where 𝐸𝑆 = {(𝑢, 𝑣) ∈ 𝐸 |𝑢 ∈ 𝑆, 𝑣 ∈ 𝑆}. To simplify notation, 𝑁𝑣 (𝐺 (𝑆)) (𝑁 𝑣 (𝐺 (𝑆)))
and 𝑑𝑣 (𝐺 (𝑆)) (𝑑𝑣 (𝐺 (𝑆))) are abbreviated as 𝑁𝑣 (𝑆) (𝑁 𝑣 (𝑆)) and 𝑑𝑣 (𝑆) (𝑑𝑣 (𝑆)), respectively. Below,
we present the formal definition of the 𝑘-defective clique.

Definition 1 (𝑘-defective clique [63]). Given a graph 𝐺 and a non-negative integer 𝑘 , the subgraph
𝐺 (𝑆) induced by 𝑆 ⊆ 𝑉 is a 𝑘-defective clique if there exist at least

(|𝑆 |
2

)
− 𝑘 edges in 𝐺 (𝑆).

For simplicity, in the rest of this paper, we directly refer the set 𝑆 as the 𝑘-defective clique of

𝐺 . A 𝑘-defective clique 𝑆 of 𝐺 is considered maximal if there does not exist any other 𝑘-defective

clique 𝑆 ′ of𝐺 such that 𝑆 ⊂ 𝑆 ′. Furthermore, a 𝑘-defective clique 𝑆∗ of𝐺 is designated as maximum

if it contains the largest number of vertices among all maximal 𝑘-defective clique of 𝐺 . Before

formulate our problem, we first introduce two useful properties of the 𝑘-defective clique, which

are very helpful for designing our algorithms.

Property 1 (Hereditary [57]). Given a 𝑘-defective clique 𝑆 of𝐺 , every subset of 𝑆 is also a 𝑘-defective
clique of 𝐺 .

The hereditary property (Property 1) of the 𝑘-defective clique simplifies the maximality check

process. Specifically, if there is no vertex in 𝑉 \ 𝑆 that can be used to expand 𝑆 , then 𝑆 is maximal.

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

https://github.com/dawhc/MaximumDefectiveClique

Theoretically and Practically Efficient Maximum Defective Clique Search 206:5

Property 2 (Small diameter [14]). Given a 𝑘-defective clique 𝑆 of𝐺 , the diameter of𝐺 (𝑆) is no larger
than 2 if |𝑆 | ≥ 𝑘 + 2.

Property 2 not only implies the internal density-connected nature of the 𝑘-defective clique

(diameter 2 for the size no less than 𝑘 + 2) but also provides an acceleration for enumerating

relatively-large maximal 𝑘-defective cliques [14]. Since 𝑘 is often small (e.g., 𝑘 ≤ 10), a relatively-

large 𝑘-defective clique 𝑆 often satisfies the condition |𝑆 | ≥ 𝑘 + 2. Consequently, we can use such a

diameter constraint for pruning unnecessary search space while finding the maximum 𝑘-defective

clique. Below, we formulate our problem.

Problem definition. Given a graph𝐺 and a positive integer 𝑘 , the goal of this paper is to compute

the maximum 𝑘-defective clique of𝐺 , i.e., to find a 𝑘-defective clique with the largest size among

all maximal 𝑘-defective cliques of 𝐺 . It is noteworthy that the maximum 𝑘-defective clique search

problem we studied pertains to identifying the one among all maximum 𝑘-defective cliques in a

given graph 𝐺 .

As analyzed in Sec. 1, existing solutions [11, 13, 19, 20, 57] are still inefficient in finding the

maximum 𝑘-defective clique. To address this issue, we will propose a theoretically and practically

efficient solution in the following sections.

3 A Novel Search Framework
In this section, we present a novel framework for efficiently identifying the maximum 𝑘-defective

clique within a given graph 𝐺 . Our framework builds upon a classic branch-and-bound technique

[25], which centers around dividing the current problem into smaller sub-problems. Specifically, we

define an instance 𝐼 = (𝐺, 𝑆,𝐶, 𝑘) that aims to compute the maximum 𝑘-defective clique containing

the set 𝑆 within the subgraph 𝐺 (𝑆 ∪𝐶). Here, 𝑆 represents the current partial 𝑘-defective clique,

while 𝐶 denotes the candidate set used to expand 𝑆 . By selecting a vertex 𝑣 from 𝐶 , the instance 𝐼

can be split into two sub-instances: 𝐼1 = (𝐺, 𝑆 ∪ {𝑣},𝐶 \ {𝑣}, 𝑘) and 𝐼2 = (𝐺, 𝑆,𝐶 \ {𝑣}, 𝑘), utilizing
the branch-and-bound technique. The solution for instance 𝐼 corresponds precisely to the larger

result obtained from either 𝐼1 or 𝐼2. Consequently, in order to obtain the final solution for 𝐼 , each

sub-instance of 𝐼 can be recursively divided until the candidate set 𝐶 becomes empty. The overall

outcome is determined by selecting the maximum solution among all sub-instances.

However, the total number of sub-instances for the instance 𝐼 = (𝐺, 𝑆,𝐶, 𝑘) can be exponentially

large, specifically 𝑂 (2𝑛), when 𝑆 = ∅ and 𝐶 = 𝑉 . Enumerating all possible sub-instances would be

highly inefficient. In order to enhance the performance of such a procedure, it becomes crucial

to identify and eliminate unnecessary sub-instances that cannot yield the maximum 𝑘-defective

clique of𝐺 . Below, we first develop several new branch reduction rules and then present our search

framework.

3.1 New Branch Reduction Rules
Given an instance 𝐼 = (𝐺, 𝑆,𝐶, 𝑘) that focuses on computing the maximum 𝑘-defective clique

containing set 𝑆 in the subgraph 𝐺 (𝑆 ∪𝐶), we observe that the sub-instances of 𝐼 can be further

reduced under specific conditions. Particularly, if there is a vertex 𝑣 in 𝐶 that has at most three

non-neighbors within 𝑆 ∪𝐶 (i.e., 𝑑𝑣 (𝑆 ∪𝐶) ≤ 3), the following three reduction rules apply.

(1) One non-neighbor reduction: 𝑑𝑣 (𝑆 ∪𝐶) = 1. In this scenario, all other vertices within 𝑆 ∪𝐶
are the neighbors of 𝑣 . Consequently, the maximum 𝑘-defective clique in𝐺 (𝑆 ∪𝐶) must necessarily

include the vertex 𝑣 , which leads us to obtain the following lemma.

Lemma 1. Given an instance 𝐼 = (𝐺, 𝑆,𝐶, 𝑘), if there is a vertex 𝑣 in𝐶 with 𝑑𝑣 (𝑆 ∪𝐶) = 1, then the
maximum 𝑘-defective clique for instance 𝐼 also exists in the sub-instance 𝐼 ′ = (𝐺, 𝑆 ∪ {𝑣},𝐶 \ {𝑣}, 𝑘).

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

206:6 Qiangqiang Dai, Rong-Hua Li, Donghang Cui, & Guoren Wang

(2) Two non-neighbors reduction: 𝑑𝑣 (𝑆 ∪ 𝐶) = 2. Let 𝑢 be the non-neighbor of 𝑣 in 𝑆 ∪ 𝐶 . It
can be easily verified that the maximum 𝑘-defective clique in 𝐺 (𝑆 ∪𝐶) must contain at least one

vertex in {𝑣,𝑢}. Let 𝑆∗
1
be the maximum 𝑘-defective clique that contains 𝑣 . We observe that for any

𝑘-defective clique 𝑆∗
2
where 𝑢 ∈ 𝑆∗

2
, it always holds that |𝑆∗

1
| ≥ |𝑆∗

2
|. Therefore, in the case where

𝑑𝑣 (𝑆 ∪𝐶) = 2, it is unnecessary to find the maximum 𝑘-defective clique that excludes 𝑣 in instance

𝐼 . This leads us to the following lemma.

Lemma 2. Given an instance 𝐼 = (𝐺, 𝑆,𝐶, 𝑘), if there exists a vertex 𝑣 in 𝐶 with 𝑑𝑣 (𝑆 ∪𝐶) = 2, it
follows that a maximum 𝑘-defective clique of instance 𝐼 must exist in the sub-instance 𝐼 ′ = (𝐺, 𝑆 ∪
{𝑣},𝐶 \ {𝑣}, 𝑘).

Proof sketch. Assume that 𝑆∗ is a maximum 𝑘-defective clique for instance 𝐼 . It can be easily verified

that |𝑆∗ ∩ {𝑣,𝑢}| ≥ 1, where 𝑢 is the sole non-neighbor of 𝑣 in 𝑆 ∪𝐶 . When 𝑣 ∉ 𝑆∗, we can establish

that 𝑆∗ \ {𝑢} ∪ {𝑣} also forms a maximum 𝑘-defective clique if 𝑢 ∈ 𝐶 . Moreover, for the case where

𝑢 ∈ 𝑆 , we let𝑤 be a vertex in 𝑆∗ \ 𝑆 with the minimum value of 𝑑𝑤 (𝑆∗). It follows that 𝑆∗ can be

expanded by 𝑣 , if 𝑑𝑤 (𝑆∗) = |𝑆∗ | − 1. Otherwise, 𝑆∗ \ {𝑤} ∪ {𝑣} will form a maximum 𝑘-defective

clique for instance 𝐼 . Thus, there always exist a maximum 𝑘-defective clique for instance 𝐼 that

contains 𝑣 . □
Based on Lemma 1 and Lemma 2, we can derive that for a given instance 𝐼 = (𝐺, 𝑆,𝐶, 𝑘), if there

exists a vertex 𝑣 in 𝐶 such that 𝑑𝑣 (𝑆 ∪𝐶) ≤ 2, then it is sufficient to consider only the scenario

where the maximum 𝑘-defective clique of 𝐼 includes vertex 𝑣 .

(3) Three non-neighbors reduction: 𝑑𝑣 (𝑆 ∪𝐶) = 3. Let 𝑢 and 𝑤 be the two non-neighbors of

vertex 𝑣 in 𝑆 ∪𝐶 . In the instance 𝐼 = (𝐺, 𝑆,𝐶, 𝑘), the maximum 𝑘-defective clique must include at

least one vertex from the set {𝑣,𝑢,𝑤}. Moreover, based on Lemma 2, we obtain that if a maximum

𝑘-defective clique contains only 𝑢 or only𝑤 among the vertices in {𝑣,𝑢,𝑤}, there must also exist

a maximum 𝑘-defective clique that includes vertex 𝑣 . Hence, if the maximum 𝑘-defective clique

excludes vertex 𝑣 , it necessarily contains both vertices 𝑢 and𝑤 . To further enhance such a result,

we introduce the following lemma.

Lemma 3. Let 𝑆∗ be a maximum 𝑘-defective clique for the instance 𝐼 = (𝐺, 𝑆,𝐶, 𝑘). If there exists a
vertex 𝑣 in 𝐶 satisfying 𝑑𝑣 (𝑆 ∪𝐶) = 3 and 𝑑𝑣 (𝑆) ≤ 1, with 𝑢 and𝑤 denoting the two non-neighbors
of 𝑣 in 𝑆 ∪𝐶 , the following results hold.
• Case 𝑑𝑣 (𝑆) = 0: If (𝑢,𝑤) ∉ 𝐸 or 𝑑𝑢 (𝑆) + 𝑑𝑤 (𝑆) ≥ 1, 𝑆∗ is included in the sub-instance 𝐼1 =

(𝐺, 𝑆 ∪ {𝑣},𝐶 \ {𝑣}, 𝑘); otherwise, 𝑆∗ is either included in the sub-instance 𝐼1 or the sub-instance
𝐼2 = (𝐺, 𝑆 ∪ {𝑢,𝑤},𝐶 ∩ 𝑁𝑢 (𝐺) ∩ 𝑁𝑤 (𝐺), 𝑘).
• Case 𝑑𝑣 (𝑆) = 1: If 𝑑𝑢 (𝑆) ≥ 1 with 𝑢 ∈ 𝐶 , 𝑆∗ is included in the sub-instance 𝐼1 = (𝐺, 𝑆 ∪
{𝑣},𝐶 \ {𝑣}, 𝑘); otherwise, 𝑆∗ is either included in the sub-instance 𝐼1 or the sub-instance 𝐼3 =

(𝐺, 𝑆 ∪ {𝑢},𝐶 ∩ 𝑁𝑢 (𝐺), 𝑘).

Proof sketch.When 𝑑𝑣 (𝑆) = 0, it is easy to verify that 𝑆∗ contains either the vertex 𝑣 , or both vertices

𝑢 and𝑤 based on Lemma 2.We now consider the case where {𝑢,𝑤} ⊆ 𝑆∗. If𝑑𝑢 (𝑆) ≥ 1 (or𝑑𝑤 (𝑆) ≥ 1)

or (𝑢,𝑤) ∉ 𝐸, 𝑆∗ \ {𝑢} (or 𝑆∗ \ {𝑤}) forms a (𝑘 − 1)-defective clique in 𝐺 , which can be expanded

by 𝑣 . If 𝑑𝑢 (𝑆) + 𝑑𝑤 (𝑆) = 0 and (𝑢,𝑤) ∈ 𝐸, another sub-instance 𝐼2 = (𝐺, 𝑆 ∪ {𝑢,𝑤},𝐶 \ {𝑢,𝑤}, 𝑘)
is invoked. It should be noting that only the common neighbors of 𝑢 and 𝑤 in 𝐶 can be used to

expand 𝑆 ∪ {𝑢,𝑤} for sub-instance 𝐼2. Since if there exists a vertex 𝑣 ′ in 𝐶 \ 𝑁𝑢 (𝐺) (or 𝐶 \ 𝑁𝑤 (𝐺))
included in 𝑆∗, 𝑆∗ \ {𝑢} (or 𝑆∗ \ {𝑤}) also forms a (𝑘 − 1)-defective clique in 𝐺 , expandable by 𝑣 .

Hence, this theorem holds for the case 𝑑𝑣 (𝑆) = 0. The case 𝑑𝑣 (𝑆) = 1 can be proved similarly. □
The following example illustrates the idea of Lemma 3.

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

Theoretically and Practically Efficient Maximum Defective Clique Search 206:7

v2 v3

v4

v5v6

v7v1

(a) The graph𝐺

v2S1

C1

v3

v4

v5v6

v7

v1

(b) 𝐼1 = (𝐺,𝑆1,𝐶1, 𝑘)

C2

v4

v5

S2 v3

v6

(c) 𝐼2 = (𝐺,𝑆2,𝐶2, 𝑘)

Fig. 1. Illustrations of three non-neighbor reduction,
where the maximum 𝑘-defective clique 𝑆∗ of𝐺 is either
included in 𝐼1 or in 𝐼2 (𝑘 ≥ 2)

S

C

v
1

v
2

v
6

v
5

v
4

v
3

v
7

v
8

v
9

v
10

(a) 𝑑𝑣
2
(𝑆) = 0

S

C

v
1

v
2

v
6

v
5

v
4

v
3

v
7

v
8

v
9

v
10

(b) 𝑑𝑣
2
(𝑆) = 1

Fig. 2. Illustrations of the pivot-based technique
in Theorem 3.2, where red vertices are the pivot
vertices. The maximum 𝑘-defective clique either
contains a red or a green vertex or an orange edge
(𝑘 ≥ 1)

Example 1. Consider a graph 𝐺 = (𝑉 , 𝐸) depicted in Fig. 1(a) with 𝑘 ≥ 2. Since 𝑑𝑣1 (𝐺) = 3, we
can utilize the branch reduction rule in Lemma 3. Then, the maximum 𝑘-defective clique 𝑆∗ of 𝐺 is
either included in 𝐼1 = (𝐺, 𝑆1 = {𝑣1},𝐶1, 𝑘) or in 𝐼2 = (𝐺, 𝑆2 = {𝑣4, 𝑣5},𝐶2, 𝑘), as shown in Fig. 1(b)
and Fig. 1(c), respectively. Furthermore, in the sub-instance 𝐼2 for computing 𝑆∗ containing {𝑣4, 𝑣5},
the candidate set 𝐶2 must be included in common neighbors of 𝑣4 and 𝑣5. Consequently, 𝐶2 contains
only the vertices 𝑣3 and 𝑣6. In addition, in the sub-instance 𝐼1, we note that 𝑑𝑣4 (𝑆1 ∪ 𝐶1) = 3. This
observation allows us to further apply the three non-neighbor reduction rule to prune 𝐼1. Thus, this
example serves to illustrate the remarkable pruning capabilities of the proposed reduction rules.

3.2 New Pivot-Based Techniques
Before unveiling our techniques, we first introduce a pivot-based solution initially developed for

maximal 𝑘-defective clique enumerations [14]. The core concept behind this pivot-based technique

is as follows: when given an instance 𝐼 = (𝐺, 𝑆,𝐶, 𝑘) aimed at enumerating all maximal 𝑘-defective

cliques containing 𝑆 in 𝐺 (𝑆 ∪ 𝐶), if there exists a vertex 𝑣 ∈ 𝐶 such that 𝑆 ⊆ 𝑁𝑣 (𝐺), then any

maximal 𝑘-defective clique containing 𝑆 in𝐺 (𝑆 ∪𝐶) either includes the vertex 𝑣 or a non-neighbor
vertex of 𝑣 in𝐶 . This pivot-based technique is evidently applicable to solving the problem of finding

the maximum 𝑘-defective clique.

However, we note that the approach in [14] is overly restrictive on pivot vertices, resulting

in numerous unnecessary computations when adapting this method to identify the maximum

𝑘-defective clique of𝐺 . To illustrate this point, let us consider an instance 𝐼 = (𝐺, 𝑆,𝐶, 𝑘). If there
exist two vertices 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑆 such that 𝑁𝑣 (𝐶) ∩ 𝑁𝑢 (𝐶) = ∅, it becomes apparent that there

is no vertex 𝑤 in 𝐶 that satisfies 𝑆 ⊆ 𝑁𝑤 (𝐺). As a result, the pivot-based technique established

in [14] cannot be used to prune sub-instances of 𝐼 , leading to a substantial number of redundant

computations. To address this issue, we develop a novel pivot-based technique for finding the

maximum 𝑘-defective clique of 𝐺 , which is presented below.

Theorem 3.1 (New pivoting rule). Given an instance 𝐼 = (𝐺, 𝑆,𝐶, 𝑘) aimed at finding the
maximum 𝑘-defective clique that contains 𝑆 in𝐺 (𝑆 ∪𝐶), let 𝑣 , denoted by the pivot vertex, be a vertex
in 𝐶 with 𝑑𝑣 (𝑆) ≤ 1, then the maximum 𝑘-defective clique for instance 𝐼 either contains 𝑣 or a vertex
in 𝐶 \ {𝑣} \ 𝑁𝑣 (𝐺).

Proof sketch. If 𝑑𝑣 (𝑆) = 0, this theorem is clearly established [14]. When 𝑑𝑣 (𝑆) = 1, we obtain that

𝑆 is a (𝑘 − 1)-defective clique, as 𝑣 can be used to expand 𝑆 . Denote by 𝐶1 = 𝐶 ∩ 𝑁𝑣 (𝐺). We note

that this theorem disregards the maximum 𝑘-defective clique contained in 𝐺 (𝑆 ∪𝐶1). Let 𝑆 ∪ 𝐷 be

the maximum 𝑘-defective clique in𝐺 (𝑆 ∪𝐶1). We now demonstrate that there exists a 𝑘-defective

clique 𝑆∗ with |𝑆∗ | ≥ |𝑆 ∪𝐷 |, where 𝑣 ∈ 𝑆∗. Given a vertex 𝑢 ∈ 𝐷 with the minimum 𝑑𝑢 (𝑆 ∪𝐷), we
observe that 𝑆 ∪𝐷 ∪ {𝑣} is a larger 𝑘-defective clique if 𝑑𝑢 (𝑆 ∪𝐷) = 1. Moreover, if 𝑑𝑢 (𝑆 ∪𝐷) ≥ 2,

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

206:8 Qiangqiang Dai, Rong-Hua Li, Donghang Cui, & Guoren Wang

we obtain that 𝑆 ∪ 𝐷 \ {𝑢} ∪ {𝑣} is also a 𝑘-defective clique. Thus, there exists a 𝑘-defective clique

𝑆∗ containing 𝑣 with |𝑆∗ | ≥ |𝑆 ∪ 𝐷 |. □
Although Theorem 3.1 effectively reduces redundant sub-branches that cannot generate the

maximum𝑘-defective clique, we find that in instance 𝐼 = (𝐺, 𝑆,𝐶, 𝑘), theremight still be unnecessary

computations when expanding 𝑆 with vertices in𝐶\𝑁𝑣 (𝐺), where 𝑣 is the selected pivot vertex from
𝐶 . For instance, let 𝑆∗ be amaximum𝑘-defective clique of instance 𝐼 . If |𝑆∗\{𝑣}\𝑁𝑣 (𝐺) | ≥ 2, it is easy

to see that 𝑆∗ can be identified by either 𝐼 ′ = (𝐺, 𝑆 ∪ {𝑢},𝐶 \ {𝑢}, 𝑘) or 𝐼 ′′ = (𝐺, 𝑆 ∪ {𝑤},𝐶 \ {𝑤}, 𝑘),
where 𝑢 and𝑤 are the two vertices in 𝑆∗ \ {𝑣} \𝑁𝑣 (𝐺) that are used to expand 𝑆 based on the pivot-

based technique described in Theorem 3.1. Consequently, this leads to redundant computations. To

overcome this problem, we propose an improved pivot-based technique, which is outlined below.

Theorem 3.2 (Improved pivoting rule). Consider an instance 𝐼 = (𝐺, 𝑆,𝐶, 𝑘), where 𝑣 is the
pivot vertex in 𝐶 with 𝑑𝑣 (𝑆) ≤ 1. Denote by 𝑃 = 𝐶 \ {𝑣} \ 𝑁𝑣 (𝐺). We then have the following results.

• If 𝑑𝑣 (𝑆) = 0, the maximum 𝑘-defective clique for instance 𝐼 either contains 𝑣 or an edge in 𝐺 (𝑃).
• If 𝑑𝑣 (𝑆) = 1, the maximum 𝑘-defective clique for instance 𝐼 either contains a vertex in {𝑣} ∪ 𝑃1 or
an edge in 𝐺 (𝑃2), where 𝑃1 = {𝑢 ∈ 𝑃 |𝑑𝑢 (𝑆) = 0} and 𝑃2 = 𝑃 \ 𝑃1.

Proof sketch. Let 𝑆∗ be the maximum 𝑘-defective clique containing 𝑆 in𝐺 (𝑆 ∪𝐶). For the case where
𝑑𝑣 (𝑆) = 0, suppose, on the contrary, that 𝐷 = 𝑆∗ ∩ 𝑃 forms an independent set when 𝑣 ∉ 𝑆∗. Clearly,

𝐷 ≠ ∅, as 𝑑𝑣 (𝑆) = 0. Given any vertex 𝑢 in 𝐷 , we obtain that 𝑆∗ \ {𝑢} forms a (𝑘 + 1− |𝐷 |)-defective
clique. Moreover, since 𝑑𝑣 (𝑆∗) = |𝐷 |, we conclude that 𝑆∗ \ {𝑢} ∪ {𝑣} is also a 𝑘-defective clique in

𝐺 (𝑆 ∪𝐶). Therefore, if 𝑣 ∉ 𝑆∗, there exists at least one edge in 𝐺 (𝐷) for the case where 𝑑𝑣 (𝑆) = 0.

A similar analysis can be employed to prove the case where 𝑑𝑣 (𝑆) = 1. □
The example shown in Fig. 2 further illustrates the results described in Theorem 3.2.

Example 2. Consider the graph𝐺 shown in Fig. 2(a) with 𝑘 ≥ 2. Let 𝑆 = {𝑣1} and𝐶 = {𝑣2, 𝑣3, ..., 𝑣10}
be the current 𝑘-defective clique and the candidate set of 𝐶 , respectively. By selecting 𝑣2 as the pivot
vertex, we can derive that the maximum 𝑘-defective clique 𝑆∗ of 𝐺 either contains 𝑣2 or an edge from
𝐺 ({𝑣7, 𝑣8, 𝑣9, 𝑣10}), as stated in Theorem 3.2. However, if (𝑣1, 𝑣2) ∉ 𝐸 and we still choose 𝑣2 as the pivot
vertex, then 𝑆∗ either contains a vertex from {𝑣2, 𝑣8} or an edge from 𝐺 ({𝑣7, 𝑣9, 𝑣10}). Notably, since
𝐺 ({𝑣7, 𝑣9, 𝑣10}) does not contain an edge involving 𝑣7, it is unnecessary to consider the scenario where
𝑆∗ includes 𝑣7, as depicted in Fig. 2(b).

3.3 Implementation of the Search Framework
Utilizing the proposed branch reduction rules and pivoting rules, we develop a novel branching

rule to efficiently find the maximum 𝑘-defective clique in graph 𝐺 , as outlined below.

Branching rule. Let 𝑁𝑆 (𝐶) = {𝑣 ∈ 𝐶 |𝑆 ⊆ 𝑁𝑣 (𝐺)} be the set of common neighbors of 𝑆 in 𝐶 . We

obtain the following branching rule for instance 𝐼 = (𝐺, 𝑆,𝐶, 𝑘).
• If there exists a vertex 𝑣 ∈ 𝐶 satisfying 𝑑𝑣 (𝑆 ∪𝐶) ≤ 3 and 𝑑𝑣 (𝑆) ≤ 1, the branch reduction rules

proposed in Sec. 3.1 are applied to determine the maximum solution for the instance 𝐼 .

• If |𝐶 \𝑁𝑆 (𝐶) | +𝑑 (𝑆) ≥ 𝑘 ≥ 1 or there is no vertex 𝑣 in𝐶 with 𝑑𝑣 (𝑆) ≤ 1, a vertex 𝑣 ∈ 𝐶 with the

highest 𝑑𝑣 (𝑆) is selected to split the instance 𝐼 into two sub-instances 𝐼1 = (𝐺, 𝑆 ∪{𝑣},𝐶 \ {𝑣}, 𝑘)
and 𝐼2 = (𝐺, 𝑆,𝐶 \ {𝑣}, 𝑘).
• Otherwise, the proposed pivoting rule described in Theorem 3.2 is employed to branch the

instance 𝐼 .

Implementation details. Armed with the proposed branching rule, we devise a new algorithm to

identify the maximum 𝑘-defective clique of 𝐺 , which is shown in Algorithm 1.

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

Theoretically and Practically Efficient Maximum Defective Clique Search 206:9

Algorithm 1: A New Search Framework

Input: The graph𝐺 = (𝑉 , 𝐸) and a parameter 𝑘

Output: The maximum 𝑘-defective clique 𝑆∗ of𝐺
1 𝑆∗ ← ∅;
2 𝐵𝑟𝑎𝑛𝑐ℎ (∅,𝑉) ;
3 return 𝑆∗;

4 Function: 𝐵𝑟𝑎𝑛𝑐ℎ (𝑆,𝐶)
5 if 𝐶 = ∅ then
6 if |𝑆 | > |𝑆∗ | then 𝑆∗ ← 𝑆 ;

7 return;

8 𝐶1 ← {𝑢 ∈ 𝐶 |𝑑𝑢 (𝑆) ≤ 1};𝐶2 ← 𝐶 \𝐶1;

9 if ∃𝑢 ∈ 𝐶1 such that 𝑑𝑢 (𝑆 ∪𝐶) ≤ 3 then
10 Apply the branch reduction rules in Lemma 1-3;

11 else if |𝐶 \ 𝑁𝑆 (𝐶) | + 𝑑 (𝑆) ≥ 𝑘 ≥ 1 or𝐶1 = ∅ then
12 𝑣 ← a vertex in𝐶 \ 𝑁𝑆 (𝐶) with largest 𝑑𝑣 (𝑆) ;
13 𝐶′ ← 𝑈𝑝𝑑𝑎𝑡𝑒 (𝑆,𝐶, 𝑣) ;
14 𝐵𝑟𝑎𝑛𝑐ℎ (𝑆 ∪ {𝑣},𝐶′) ; 𝐵𝑟𝑎𝑛𝑐ℎ (𝑆,𝐶 \ {𝑣}) ;
15 else
16 𝑣 ← a vertex in𝐶1 with the largest value of 𝑑𝑣 (𝐶) ;
17 𝑃1 ← {𝑣}; 𝑃2 ← 𝑁 𝑣 (𝐶) \ 𝑃1;
18 if 𝑑𝑣 (𝑆) = 1 then
19 𝑃1 ← {𝑢 ∈ 𝑁 𝑣 (𝐶) |𝑑𝑢 (𝑆) = 0} ∪ 𝑃1;
20 𝑃2 ← 𝑁 𝑣 (𝐶) \ 𝑃1;
21 foreach 𝑢 ∈ 𝑃1 do
22 𝐶′ ← 𝑈𝑝𝑑𝑎𝑡𝑒 (𝑆,𝐶,𝑢) ;
23 𝐵𝑟𝑎𝑛𝑐ℎ (𝑆 ∪ {𝑢},𝐶′) ;𝐶 ← 𝐶 \ {𝑢};
24 foreach 𝑢 ∈ 𝑃2 do
25 𝐶′ ← 𝑈𝑝𝑑𝑎𝑡𝑒 (𝑆,𝐶,𝑢) ; 𝑃 ′

2
← 𝐶′ ∩ 𝑃2;

26 foreach 𝑤 ∈ 𝑃 ′
2
s.t. (𝑢, 𝑤) ∈ 𝐸 do

27 𝐶′′ ← 𝑈𝑝𝑑𝑎𝑡𝑒 (𝑆 ∪ {𝑢},𝐶′, 𝑤) ;
28 𝐵𝑟𝑎𝑛𝑐ℎ (𝑆 ∪ {𝑢, 𝑤},𝐶′′) ;𝐶′ ← 𝐶′ \ {𝑤};
29 𝐶 ← 𝐶 \ {𝑢};

First, Algorithm 1 initializes the current maximum 𝑘-defective clique 𝑆∗ as an empty set. Then, it

invokes the 𝐵𝑟𝑎𝑛𝑐ℎ(𝑆,𝐶) procedure (line 2), which follows our proposed branching rules (lines 9-29).
Here, the parameters 𝑆 and 𝐶 are denoted by the current 𝑘-defective clique and the candidate set

used to expand 𝑆 , respectively. If there exists a vertex 𝑢 ∈ 𝐶 that satisfies both 𝑑𝑢 (𝑆 ∪𝐶) ≤ 3 and

𝑑𝑢 (𝑆) ≤ 1, the branch reduction rules (proposed in Sec. 3.1) are applied to find the maximum 𝑘-

defective clique that contains 𝑆 (lines 9-10). If branch reduction rules cannot be used, the procedure

determines whether the size of 𝐶 \ 𝑁𝑆 (𝐶) is no less than 𝑘 − 𝑑 (𝑆) or there is no vertex 𝑣 in 𝐶

with 𝑑𝑣 (𝑆) ≤ 1 (line 11). If this condition holds, the procedure directly identifies the maximum

𝑘-defective clique that includes or excludes vertex 𝑣 (line 14), where 𝑣 is a vertex in 𝐶 with the

maximum value of𝑑𝑣 (𝑆) (line 12). If the above conditions are not satisfied, the maximum 𝑘-defective

clique either contains a vertex in 𝑃1 or an edge in 𝐺 (𝑃2), based on Theorem 3.2. Here, 𝑃1 is defined

as {𝑣} (or {𝑣} ∪ {𝑢 ∈ 𝑁 𝑣 (𝐶) |𝑑𝑣 (𝑆) = 0} if 𝑑𝑣 (𝑆) = 1), and 𝑃2 as 𝑁 𝑣 (𝐶) \𝑃1, where 𝑣 is a pivot vertex
selected from 𝐶 to minimize the size of 𝑃1 ∪ 𝑃2 (line 16). Subsequently, this procedure iteratively

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

206:10 Qiangqiang Dai, Rong-Hua Li, Donghang Cui, & Guoren Wang

Algorithm 2:𝑈𝑝𝑑𝑎𝑡𝑒 (𝑆,𝐶, 𝑣)
1 𝐶′ ← ∅; 𝑠 ← the number of missing edges in𝐺 (𝑆) ;
2 for 𝑢 ∈ 𝐶 , s.t. 𝑢 ≠ 𝑣 do
3 𝑑 ← 𝑠 + 𝑑𝑣 (𝑆) + 𝑑𝑢 (𝑆) ;
4 if 𝑑 ≤ 𝑘 then
5 if 𝑢 ∈ 𝑁𝑣 (𝐺) then𝐶′ ← 𝐶′ ∪ {𝑢};
6 else if 𝑑 < 𝑘 then𝐶′ ← 𝐶′ ∪ {𝑢};

7 return𝐶′;

� {};

� = {v1,v2,v3,v4,v5,v6,v7,v8}
� = {v3}; � = {v1,v2,v4,v5,v6,v7,v8}

Lemma 2

� = {v3,v7}; � = {v1,v2,v4,v5,v6,v8}

� = {v3,v7,v4}; � = {v2,v5}

+v3

+v7

� = {v3,v7,v4,v2}; � = {}

Theorem 3.2
+v4 +(v6,v8)

� = {v3,v7,v6,v8}; � = {}

+v2

Lemma 2

Lemma 2

Fig. 3. The branching process of Algorithm 1 for finding the maximum 𝑘-defective clique in the graph 𝐺 ,
where 𝑘 = 1 and 𝐺 is shown in Fig. 4(a)

expands the current 𝑘-defective clique 𝑆 by selecting vertices in 𝑃1 (lines 21-23) and edges in𝐺 (𝑃2)
(lines 24-29). Finally, this recursion terminates when 𝐶 becomes empty (lines 5-7) and updates 𝑆∗ if
a larger 𝑘-defective clique is discovered (line 6).

In addition, when a vertex 𝑣 ∈ 𝐶 is added to 𝑆 , it needs to remove the vertices from the candidate

set that cannot be used to expand 𝑆 ∪ {𝑣}. To meet this requirement, we develop a procedure

outlined in Algorithm 2, which involves the straightforward removal of each vertex 𝑢 from 𝐶 \ {𝑣}
that possesses more than 𝑘 − 𝑠 − 𝑑𝑣 (𝑆) non-neighbors within 𝑆 ∪ {𝑣} (lines 2-6). Here, 𝑠 represents
the total number of missing edges in𝐺 (𝑆) (line 1). It can be easily verified that the time complexity

of Algorithm 2 is bounded by 𝑂 (𝑛). The following example illustrates the idea of Algorithm 1.

Example 3. Consider the graph𝐺 depicted in Fig.4(a), with 𝑘 = 1. Algorithm 1 initializes the current
𝑘-defective clique 𝑆 and its candidate set as ∅ and {𝑣1, 𝑣2, ..., 𝑣8}, respectively. Upon recognizing that
there are 2 non-neighbors for both 𝑣3 and 𝑣7 in 𝐺 (𝑆 ∪𝐶), the algorithm first applies the branching
reduction rule, focusing solely on the scenario where the maximum 𝑘-defective clique contains 𝑆 =

𝑆 ∪ {𝑣3, 𝑣7}. In the subsequent recursive call with 𝑆 = {𝑣3, 𝑣7}, it is observed that 𝐶 ⊆ 𝑁𝑆 (𝐶) and no
vertex 𝑣 in 𝐶 satisfies 𝑑𝑣 (𝑆 ∪𝐶) ≤ 3. Consequently, the pivot-based branching rule is invoked. If 𝑣4
is selected as the pivot vertex, then 𝑆∗ either includes vertex 𝑣4 or edge (𝑣6, 𝑣8) based on Theorem 3.2.
Opting to expand {𝑣3, 𝑣7} by selecting 𝑣4, the algorithm identifies the current maximum 𝑘-defective
clique 𝑆∗ = {𝑣3, 𝑣7, 𝑣4, 𝑣2}. Additionally, upon considering the edge (𝑣6, 𝑣8) for expansion, it is evident
that there exists no vertex in the candidate set of {𝑣3, 𝑣7, 𝑣6, 𝑣8}. Thus, the recursive process is finished,
yielding the final maximum 𝑘-defective clique 𝑆∗ = {𝑣3, 𝑣7, 𝑣4, 𝑣2}. The complete branching tree of
Algorithm 1 is illustrated in Fig. 3.

3.4 Complexity Analysis
We proceed to analyze the time and space complexity of the proposed algorithm, as outlined below.

Theorem 3.3. The time complexity of Algorithm 1 is bounded by𝑂 (𝑚𝛾𝑛
𝑘
), where𝛾𝑘 is the maximum

real root of 𝑥𝑘+3 − 2𝑥𝑘+2 + 𝑥2 − 𝑥 + 1 = 0 if 𝑘 ≥ 1. Specifically, when 𝑘 = 1, 2 and 3, the corresponding
values of 𝛾𝑘 are 1.466, 1.755, and 1.889, respectively.

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

Theoretically and Practically Efficient Maximum Defective Clique Search 206:11

Proof sketch. Let 𝑇 (𝑛) be the total number of leaves of 𝑏𝑟𝑎𝑛𝑐ℎ(𝑆,𝐶) outlined in Algorithm 1. Then,

the time complexity of Algorithm 1 is bounded by 𝑂 (𝑚𝑇 (𝑛)), as each recursive call of 𝑏𝑟𝑎𝑛𝑐ℎ

requires at most 𝑂 (𝑚) time. We now analyze the size of 𝑇 (𝑛).
(1) If ∃𝑣 ∈ 𝐶 with 𝑑𝑣 (𝑆 ∪𝐶) ≤ 3 and 𝑑𝑣 (𝑆) ≤ 1, the branch reduction rules outlined in Sec. 3.1 is

used to identify the maximum 𝑘-defective clique. Let𝐷 = {𝑢,𝑤} be the set of two non-neighbors
of 𝑣 in 𝑆 ∪𝐶 . We then have the following recurrence relations:

𝑇 (𝑛) ≤ 𝑇 (𝑛 − 1), if 𝑑𝑣 (𝑆 ∪𝐶) ≤ 2;

𝑇 (𝑛) ≤ 𝑇 (𝑛 − 1) +𝑇 (|𝑁𝐷 (𝐶) |), if 𝑑𝑣 (𝐶) = 3 and 𝑑𝑣 (𝑆) = 0;

𝑇 (𝑛) ≤ 𝑇 (𝑛 − 1) +𝑇 (|𝑁𝑢 (𝐶) |), if 𝑑𝑣 (𝐶) = 2 and 𝑑𝑣 (𝑆) = 1.

(1)

It is easy to verify that 𝑇 (𝑛) ≤ 𝑇 (𝑛 − 1) +𝑇 (𝑛 − 3) is the worst-case recurrence for the branch
reduction rules.

(2) If |𝐶 \ 𝑁𝑆 (𝐶) | + 𝑑 (𝑆) ≥ 𝑘 , a base recurrence of 𝑇 (𝑛) ≤ 𝑇 (𝑛 − 1) + 𝑇 (𝑛 − 1) is obtained. We

note that this recurrence can be tightened, as in 𝑏𝑟𝑎𝑛𝑐ℎ(𝑆 ∪ {𝑣},𝐶 \ {𝑣}), another vertex from
𝐶 \ 𝑁𝑆 (𝐶) will be selected to expand 𝑆 ∪ {𝑣}. This means that at most 𝑘 − 𝑑 (𝑆) vertices in
𝐶 \ 𝑁𝑆 (𝐶) are in preference to be added to 𝑆 . If 𝑑𝑣 (𝑆) ≥ 2, it easy to obtain a recurrence of

𝑇 (𝑛) ≤ ∑𝑘
𝑖=1𝑇 (𝑛 − 𝑖). If 𝑑𝑣 (𝑆) ≤ 1, we have 𝑑𝑣 (𝑆 ∪𝐶) ≥ 4. Consequently, we derive that the

size of 𝐶 \ 𝑁𝑆∪{𝑣} (𝐶) is at least 𝑘 − 𝑑 (𝑆) + 2. Hence, the following recurrence relation can be

obtained:

𝑇 (𝑛) ≤
𝑘∑︁
𝑖=1

𝑇 (𝑛 − 𝑖) +𝑇 (𝑛 − 𝑘 − 2). (2)

(3) If 𝐶1 = ∅ (line 8 of Algorithm 1), we obtain that at most 𝑘/2 vertices in 𝐶 are possible to be

added to 𝑆 . This leads to the following recurrence: 𝑇 (𝑛) ≤ ∑𝑘/2
𝑖=1

𝑇 (𝑛 − 𝑖), where 𝑘 ≥ 2.

(4) If |𝐶 \ 𝑁𝑆 (𝐶) | + 𝑑 (𝑆) < 𝑘 , the pivot-base branching technique is executed. In this case, all

vertices in 𝑃2 are pairwise connected to produce the worst case recursion. Thus, the pivot-based

branching rule produces a recurrence of 𝑇 (𝑛) ≤ ∑ |𝑃1 |
𝑖=1

𝑇 (𝑛 − 𝑖) + ∑ |𝑃2 |
𝑖=1

∑ |𝑃2 |
𝑗=𝑖+1𝑇 (𝑛 − |𝑃1 | − 𝑗).

Such a recurrence can be improved as:

𝑇 (𝑛) ≤
|𝑃1 |∑︁
𝑖=1

𝑇 (𝑛 − 𝑖) +
|𝑃2 |−1∑︁
𝑖=1

𝑇 (𝑛 − |𝑃1 | − 𝑖) =
|𝑃1 |+|𝑃2 |−1∑︁

𝑖=1

𝑇 (𝑛 − 𝑖), (3)

since𝑇 (𝑛) ≤ ∑ |𝑃1 |
𝑖=1

𝑇 (𝑛−𝑖)+∑ |𝑃2 |
𝑖=1

∑ |𝑃2 |
𝑗=𝑖+1𝑇 (𝑛−|𝑃1 |− 𝑗) ≤

∑ |𝑃1 |
𝑖=1

𝑇 (𝑛−𝑖)+∑ |𝑃2 |
𝑖=1

∑ |𝑃1 |+|𝑃2 |−1
𝑗=1

𝑇 (𝑛−
|𝑃1 | −𝑖− 𝑗) ≤

∑ |𝑃1 |+|𝑃2 |−1
𝑖=1

𝑇 (𝑛−𝑖). It is easy to verify that𝑇 (𝑛) ≤ ∑𝑘
𝑖=1𝑇 (𝑛−𝑖) if 𝑑 = |𝑃1 | + |𝑃2 | ≤

𝑘 + 1. For the case of 𝑑 > 𝑘 + 1, we note that each sub-recursive call of 𝐵𝑟𝑎𝑛𝑐ℎ(𝑆,𝐶) will, in the

worst-case scenario, employ the branching rule outlined in case (2). When combining Eq. (2)

and Eq. (3), we derive that 𝑇 (𝑛) is no larger than a constant multiple of the result presented in

Eq. (2). Thus, we deduce the following recurrence:

𝑇 (𝑛) ≤
𝑘∑︁
𝑖=1

𝑇 (𝑛 − 𝑖) +𝑇 (𝑛 − 𝑘 − 2). (4)

To summary, we establish that the maximum size of 𝑇 (𝑛) is bounded by Eq. (4). By utilizing

the theoretical result in [17], it can be derived that the maximum size of 𝑇 (𝑛) can be bounded by

𝑂 (𝛾𝑛
𝑘
), where 𝛾𝑘 is the maximum real-root of function 𝑥𝑘+3 − 2𝑥𝑘+2 + 𝑥2 − 𝑥 + 1 = 0 if 𝑘 ≥ 1. Thus,

Theorem 3.3 is established. □

Theorem 3.4. For the case where 𝑘 = 0, the time complexity of Algorithm 1 is bounded by
𝑂 (𝑚1.414𝑛).

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

206:12 Qiangqiang Dai, Rong-Hua Li, Donghang Cui, & Guoren Wang

Proof sketch. When 𝑘 = 0, Algorithm 1 employs either the branch reduction rules or the pivot-

based branching rule. If the branch reduction rules are utilized, we obtain a recurrence of 𝑇 (𝑛) ≤
𝑇 (𝑛 − 1) +𝑇 (𝑛 − 4), as there is no vertex 𝑣 ∈ 𝐶 satisfying 𝑑𝑣 (𝑆) ≥ 1. Moreover, if the pivot-based

branching rule is employed, we can derive a recurrence of𝑇 (𝑛) ≤ 𝑑𝑇 (𝑛−𝑑). Since 𝑑 ≥ 4, we obtain

that 𝑇 (𝑛) ≤ 4𝑇 (𝑛 − 4) ≤
√
2

𝑛
. Thus, this theorem is established. □

Theorem 3.5. The space complexity of Algorithm 1 is𝑂 (𝜅𝑛+𝑚), where𝜅 is the size of the maximum
𝑘-defective clique of 𝐺 .

Proof. Based on the depth-first branching strategy, it is easy to verify that the 𝐵𝑟𝑎𝑛𝑐ℎ(𝑆,𝐶)
procedure consumes at most (𝜅𝑛) spaces. Since the algorithm also requires storing the entire graph

in the main memory, then the overall space usage of Algorithm 1 is bounded by 𝑂 (𝜅𝑛 +𝑚). □

Remark. It is worth highlighting that our branching method offers significant advantages in

reducing the unnecessary sub-branches when compared to the state-of-the-art algorithm kDC [11].

This distinction arises from the fact that the branching rule developed in [11] may still attempt to

expand the current 𝑘-defective clique 𝑆 using all vertices in the candidate set 𝐶 during recursive

calls. In contrast, our proposed branching rule selectively utilizes only a small subset of vertices

(or edges) in 𝐶 to expand 𝑆 under similar circumstances. To elaborate, when the vertices in 𝑆 are

the neighbors of every vertex in 𝐶 , kDC arbitrarily selects a vertex 𝑣 in 𝐶 to find the maximum

𝑘-defective clique that includes 𝑣 and excludes 𝑣 , respectively. However, based on the pivot-based

branching technique proposed in Theorem 3.2, our algorithm expands 𝑆 solely using the vertex

𝑣 and vertices in 𝑁 𝑣 (𝐶) (or edges in 𝐺 (𝑁 𝑣 (𝐶))), where 𝑣 ∈ 𝐶 is the selected pivot vertex, thus

significantly reducing the unnecessary sub-branches. Furthermore, as demonstrated in [11], the

worst-case time complexity of kDC is bounded by𝑂 (𝑃 (𝑛)𝛽𝑛
𝑘
), whereas as analyzed in Theorem 3.3,

the time complexity of our proposed framework is bounded by 𝑂 (𝑚𝛾𝑛
𝑘
), which is notably lower

than that of kDC (detailed in Table 1). This finding further confirms the superiority of our algorithm

over the state-of-the-art algorithm.

4 The Proposed Search Algorithm
In this section, we propose several novel optimization techniques to further enhance the efficiency

of our framework. Next, we first develop new upper bound-based pruning techniques and then

present our algorithms.

4.1 The Proposed Upper Bounds
Let 𝜅 (or 𝜅 (𝐶)) be the size of the maximum 𝑘-defective clique in graph 𝐺 (or subgraph 𝐺 (𝐶)). In
this subsection, we explore both existing and our proposed upper bounds for 𝜅 and 𝜅 (𝐶), which
play a crucial role in accelerating the computations of our algorithm.

Degree-based upper bound. The first upper bound is derived straightforwardly from the degree

information of vertices in 𝐺 , and it is widely used in various maximum 𝑘-defective clique search

algorithms [11, 13, 19]. The details of this upper bound are given in the following lemma.

Lemma 4. For a given graph 𝐺 , the size of the maximum 𝑘-defective clique in 𝐺 that contains a
vertex 𝑣 ∈ 𝑉 is at most 𝑑𝑣 (𝐺) + 𝑘 + 1. As a consequence, we have 𝜅 ≤ max𝑣∈𝑉 𝑑𝑣 (𝐺) + 𝑘 + 1.

Core-based upper bound. Here we introduce a refined upper bound for both 𝜅 and 𝜅 (𝐶), drawing
upon the well-established concept of 𝑘-core [51]. The formal definition of 𝑘-core is as follows.

Definition 2 ([51]). Given a graph 𝐺 , the subgraph 𝐺 (𝐶) of 𝐺 induced by the set 𝐶 is a 𝑘-core of 𝐺
if 𝑑𝑣 (𝐶) ≥ 𝑘 for every 𝑣 in 𝐶 .

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

Theoretically and Practically Efficient Maximum Defective Clique Search 206:13

v1

v3 v4

v5

v6v7

v8
v2

(a) The example graph𝐺

v
1

v
3 v

4

v
5

v
6

v
7

v
8

v
2

(b) The colored graph𝐺

Fig. 4. An illustrative example for graph coloring.

Let 𝐶𝑘 be a 𝑘-core subgraph of 𝐺 . The core number of a vertex 𝑣 in 𝐺 , denoted by 𝑐𝑜𝑟𝑒𝑣 (𝐺),
is defined as the maximum value of 𝑘 such that 𝑣 belongs to the 𝑘-core subgraph 𝐶𝑘 of 𝐺 , i.e.,

𝑐𝑜𝑟𝑒𝑣 (𝐺) = max{𝑘 | 𝑣 ∈ 𝐶𝑘 }. Based on this concept, a tighter upper bound is derived as follows.

Lemma 5 ([11, 14]). Given graph𝐺 , the size of the maximum 𝑘-defective clique containing a vertex
𝑣 ∈ 𝑉 in 𝐺 is bounded by 𝑐𝑜𝑟𝑒𝑣 (𝐺) + 𝑘 + 1. Consequently, we have 𝜅 ≤ max𝑣∈𝑉 𝑐𝑜𝑟𝑒𝑣 (𝐺) + 𝑘 + 1.

Lemma 5 clearly holds, as any 𝑘-defective clique 𝑆 is also a (|𝑆 | − 𝑘 − 1)-core of 𝐺 . Let 𝛿 be the

maximum core number of 𝐺 , representing the highest value of 𝑘 for which a non-empty 𝑘-core

exists in 𝐺 . We also obtain that 𝜅 ≤ 𝛿 + 𝑘 + 1. To determine the core number for each vertex in a

given graph 𝐺 , an algorithm with 𝑂 (𝑚 + 𝑛) time developed in [4] can be employed, indicating its

remarkable efficiency in generating the core-based upper bound.

Color-based upper bound. We observe that the upper bound for 𝜅 and 𝜅 (𝐶) can be improved by

a graph coloring technique. Below, we begin by providing the formal definition of graph coloring.

Definition 3 (Graph coloring). Given a graph 𝐺 , the graph coloring is to assign a color number
for each vertex 𝑣 of 𝐺 , denoted by 𝑐𝑜𝑙𝑣 (𝐺), such that any two adjacent vertices have different colors.
Formally, for every (𝑢, 𝑣) ∈ 𝐸, we have 𝑐𝑜𝑙𝑣 (𝐺) ≠ 𝑐𝑜𝑙𝑢 (𝐺).

Denote by𝜔 and𝜔 (𝐶) the number of distinct colors in𝐺 and the subgraph𝐺 (𝐶) of𝐺 induced by

𝐶 , respectively. Based on the concept of graph coloring, we can derive the following upper bound

for 𝜅 and 𝜅 (𝐶).
Lemma 6. Given a coloring of the graph 𝐺 and a subgraph 𝐺 (𝐶) of 𝐺 , the size of the maximum

𝑘-defective clique in 𝐺 and 𝐺 (𝐶) can be bounded by 𝜔 + 𝑘 and 𝜔 (𝐶) + 𝑘 , respectively.
Proof sketch. Given a 𝑘-defective clique 𝑆 , we partition it into two disjoint subsets, 𝑆1 and 𝑆2,

while ensuring the constraints: for each 𝑣 ∈ 𝑆1 (resp. 𝑢 ∈ 𝑆2), it holds that ∄𝑤 ∈ 𝑆1 \ {𝑣} with
𝑐𝑜𝑙𝑣 (𝐺) = 𝑐𝑜𝑙𝑤 (𝐺) (resp. ∃𝑤 ∈ 𝑆1 with 𝑐𝑜𝑙𝑢 (𝐺) = 𝑐𝑜𝑙𝑤 (𝐺)). It can be verified that |𝑆1 | ≤ 𝜔 and

|𝑆2 | ≤ 𝑘 . Thus, this lemma is established. □
Lemma 6 demonstrates that finding a smaller value for𝜔 (𝜔 (𝐶)) can achieve a better upper bound.

However, it is worth noting that determining the smallest value of𝜔 (𝜔 (𝐶)) for graph coloring poses
a computational challenge and is known to be NP-hard [23]. Thus, numerous heuristic approaches

have been explored to address graph coloring problem [26, 55]. In this paper, we adopt a widely

used degeneracy ordering heuristic for graph coloring. The definition of degeneracy ordering [30]

is presented below.

Definition 4. Given a graph𝐺 = (𝑉 , 𝐸), the degeneracy ordering is a permutation {𝑣1, 𝑣2, ..., 𝑣4} of
vertices in 𝑉 such that for each vertex 𝑣𝑖 , its degree is smallest in the subgraph 𝐺 ({𝑣𝑖 , 𝑣𝑖+1, ..., 𝑣𝑛}).

The degeneracy ordering, akin to the technique employed for computing the 𝑘-core of a graph,

can be obtained by the classic peeling algorithm [4]. Specifically, the vertex removal ordering aligns

with the degeneracy ordering, which can be accomplished in a time complexity of at most𝑂 (𝑛 +𝑚)
[4]. Subsequently, we can assign colors to each vertex 𝑣 of the graph 𝐺 in a reverse order of the

degeneracy ordering. As a result, the upper bound, derived from graph coloring, can be efficiently

computed in 𝑂 (𝑛 +𝑚) time.

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

206:14 Qiangqiang Dai, Rong-Hua Li, Donghang Cui, & Guoren Wang

Algorithm 3:𝑈𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑(𝑆,𝐶, 𝑘)

1 𝐷 ← ∅; 𝑠 ← the missing edges in𝐺 (𝑆) ;
2 while𝐶 ≠ ∅ do
3 𝑣 ← a vertex in𝐶 with minimum 𝑑𝑣 (𝑆) + 𝑐𝑣 (𝐷) ;
4 if 𝑠 + 𝑑𝑣 (𝑆) + 𝑐𝑣 (𝐷) > 𝑘 then break;
5 𝑠 ← 𝑠 + 𝑑𝑣 (𝑆) + 𝑐𝑣 (𝐷) ;
6 𝐷 ← 𝐷 ∪ {𝑣};𝐶 ← 𝐶 \ {𝑣};
7 return |𝑆 | + |𝐷 |;

The following example illustrates the proposed upper bounds.

Example 4. Consider the graph𝐺 depicted in Fig. 4(a). It can be seen that the maximum degree 𝑑𝑚𝑎𝑥

and maximum core number 𝛿 of vertices in 𝐺 are 5 and 4, respectively. By Lemma 4-5, we obtain that
𝜅 is limited to 7 or 6 when 𝑘 = 1. However, when employing the color-based upper bound technique
(the colored graph shown in Fig. 4(b)), we derive that 𝜅 ≤ 5 when 𝑘 = 1, as there exist 4 distinct colors
assigned to vertices in 𝐺 , which confirms the efficiency of the proposed color-based upper bound.

Advanced color-based upper bound. Let 𝑆 be a vertex subset of 𝐺 , and 𝜅 (𝑆,𝐶) represent the
size of the maximum 𝑘-defective clique in 𝐺 (𝑆 ∪𝐶) that includes all vertices in 𝑆 . We define 𝑐𝑣 (𝐶)
as the count of other vertices in 𝐶 that share the same color as vertex 𝑣 , denoted as 𝑐𝑣 (𝐶) = |{𝑢 ∈
𝐶 \ {𝑣}|𝑐𝑜𝑙𝑣 (𝐺) = 𝑐𝑜𝑙𝑢 (𝐺)}|. With these definitions, we present the following lemma.

Lemma 7. Consider a graph 𝐺 and a non-maximal 𝑘-defective clique 𝑆 of 𝐺 . If there exists a vertex
set 𝐷 ⊆ 𝑉 \ 𝑆 that can form a larger 𝑘-defective clique with 𝑆 , then for each vertex 𝑣 ∈ 𝐷 , there are at
least 𝑑𝑣 (𝑆) + 𝑐𝑣 (𝐷) non-neighbors of 𝑣 in 𝐺 (𝑆 ∪ 𝐷).

It is easy to derive that Lemma 7 establishes. Denote by 𝑑 (𝑆) the total number of missing edges

in 𝐺 (𝑆), i.e., 𝑑 (𝑆) = 1

2

∑
𝑣∈𝑆 (|𝑆 | − 𝑑𝑣 (𝑆) − 1). A lemma states the following.

Lemma 8. Given sets 𝑆 and 𝐶 , let 𝐷 be the largest subset of 𝐶 satisfying
∑

𝑣∈𝐷 (𝑑𝑣 (𝑆) + 1

2
𝑐𝑣 (𝐷)) ≤

𝑘 − 𝑑 (𝑆). When finding the maximum 𝑘-defective clique containing 𝑆 in the subgraph 𝐺 (𝑆 ∪𝐶), we
have 𝜅 (𝑆,𝐶) ≤ |𝑆 | + |𝐷 |.

Proof sketch. Given a subset 𝐷 of𝐶 , we observe that the number of missing edges in𝐺 (𝐷) is at least
1

2

∑
𝑣∈𝐷 𝑐𝑣 (𝐷). Moreover, since each vertex 𝑣 in 𝐷 has 𝑑𝑣 (𝑆) non-neighbors in 𝑆 , we can derive that

the number of missing edges in𝐺 (𝑆 ∪𝐷) will increase by at least

∑
𝑣∈𝐷 (𝑑𝑣 (𝑆) + 1

2
𝑐𝑣 (𝐷)) if we add

𝐷 to 𝑆 . Thus, if 𝐷 is largest subset of 𝐶 satisfying

∑
𝑣∈𝐷 (𝑑𝑣 (𝑆) + 1

2
𝑐𝑣 (𝐷)) ≤ 𝑘 − 𝑑 (𝑆), we obtain

that 𝜅 (𝑆,𝐶) ≤ |𝑆 | + |𝐷 |. □
The following example illustrates the superiority of the proposed Lemma 8.

Example 5. Reconsider the colored graph shown in Fig. 4(b). Assume that 𝑆 = {𝑣2} and 𝐶 =

{𝑣1, 𝑣3, ..., 𝑣8}, with 𝑘 = 1. By Lemma 8, we can obtain that 𝜅 (𝑆,𝐶) ≤ |𝑆 | + |𝐷 |, where 𝐷 ⊆ 𝐶 . If 𝑣6 ∈ 𝐷 ,
we have |𝐷 | ≤ 3 since 𝑑𝑣6 (𝑆) = 1 and there are only two colors in𝐶 \ {𝑣6} that different from the color
of 𝑣2; otherwise, if 𝑣6 ∉ 𝐷 , we still have |𝐷 | ≤ 3. Thus, we obtain that 𝜅 (𝑆,𝐶) ≤ 4. However, when
utilizing Lemma 6, it yields 𝜅 (𝑆,𝐶) ≤ 5, which is worse than the result obtained by Lemma 8.

Based on Lemma 8, we proposed an algorithm, as shown in Algorithm 3, to compute the upper

bound of 𝜅 (𝑆,𝐶). Initially, the algorithm initializes 𝐷 as an empty set (line 1). Then, the algorithm

iteratively selects a vertex 𝑣 from 𝐶 that has the smallest value of 𝑑𝑣 (𝑆) + 𝑐𝑣 (𝐷) and adds it to the

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

Theoretically and Practically Efficient Maximum Defective Clique Search 206:15

current subset𝐷 (lines 2-6). Note that whenever 𝑣 is selected to move from𝐶 to𝐷 , the missing edges

in 𝐺 (𝑆 ∪ 𝐷) increase by at least 𝑑𝑣 (𝑆) + 𝑐𝑣 (𝐷) (lines 5-6). Finally, when 𝐶 becomes empty or the

number of missing edges in 𝐺 (𝑆 ∪ 𝐷) violates the definition of a 𝑘-defective clique, the algorithm

terminates and outputs |𝑆 | + |𝐷 | as the upper bound of 𝜅 (𝑆,𝐶) (lines 2 and 4). The following theorem
establishes the correctness of Algorithm 3.

Theorem 4.1. Algorithm 3 correctly computes the upper bound of 𝜅 (𝑆,𝐶).
Proof sketch. On the contrary, assume that there exist a subset 𝐷 ′ of 𝐶 with |𝐷 ′ | > |𝐷 | that satisfies∑

𝑣∈𝐷 ′ (𝑑𝑣 (𝑆) + 1

2
𝑐𝑣 (𝐷 ′)}) ≤ 𝑘 − 𝑑 (𝑆). It can be seen that there exist two vertices 𝑣 ∈ 𝐷 and

𝑢 ∈ 𝐷 ′ \ 𝐷 with 𝑑𝑣 (𝑆) + 𝑐𝑣 (𝐷 \ {𝑣}) > 𝑑𝑢 (𝑆) + 𝑐𝑢 (𝐷 \ {𝑣}). However, whether we consider the
condition 𝑐𝑜𝑙𝑣 (𝐺) = 𝑐𝑜𝑙𝑢 (𝐺) or 𝑐𝑜𝑙𝑣 (𝐺) ≠ 𝑐𝑜𝑙𝑢 (𝐺), we always conclude that the vertex 𝑢 will be

pushed into 𝐷 in preference to 𝑣 in our algorithm. This results in a contradiction. □

Theorem 4.2. The time complexity of Algorithm 3 is bounded by𝑂 (𝑘𝑛+𝑚), where𝑚 is the number
of missing edges in 𝐺 (𝐶).

Proof. Algorithm 3 first sorts each vertex 𝑣 in set 𝐶 by the size of 𝑑𝑣 (𝑆), which can be done

efficiently in 𝑂 (𝑘𝑛) time using a bin sort. Then, when a vertex 𝑣 from 𝐶 is added to set 𝐷 , any

vertex 𝑢 in the set 𝐶 \ 𝐷 that shares the same color as 𝑣 will have its 𝑐𝑢 (𝐷) value increased by 1.

This particular operation takes at most 𝑂 (𝑑𝑣 (𝐶)) time. Consequently, the overall time complexity

of executing lines 2-6 in Algorithm 3 amounts to 𝑂 (𝑚). □

Relations of our proposed bounds with related approaches.Within the existing literature

[11, 13], several color-based upper bounds have been developed to enhance the efficiency of finding

the maximum 𝑘-defective clique. However, it is important to note that our proposed upper bounds

can be tighter than those in [11, 13]. Specifically, in [13], it is demonstrated that the upper bound

of 𝜅 (𝐶) is bounded by

∑𝜔
𝑖=1 min(⌊ 1+

√
8𝑘+1
2
⌋, |𝜋𝑖 |), where 𝜋𝑖 is the subset of all vertices in 𝐶 with the

color number of 𝑖 . It can be easily verified that

∑𝜔
𝑖=1 min(⌊ 1+

√
8𝑘+1
2
⌋, |𝜋𝑖 |) ≥ 𝜔 + 𝑘 when 𝑘 is small.

This result demonstrates that color-based upper bound in [13] is looser than the one proposed in

Lemma 6. Moreover, in [11], an improved color-based upper bound technique is further developed.

This technique first assigns a weight 𝑤 (𝑣 𝑗) = 𝑑𝑣𝑗 (𝑆) + 𝑗 − 1 for each vertex 𝑣 𝑗 in 𝜋𝑖 if 𝑣 𝑗 is used

to expand 𝑆 . Then, the maximum value of 𝑖 plus |𝑆 | serves as the corresponding upper bound if∑𝑖
𝑗=1𝑤 (𝑣 𝑗) ≤ 𝑘 − 𝑑 (𝑆). However, we observe that this result is dominated by our result shown in

Lemma 8. Let 𝐷 be the subset obtained by Lemma 8. By utilizing the method developed in [11],

we partition 𝐷 into each 𝜋𝑖 and assign weights𝑤 (𝑣 𝑗) for each vertex 𝑣 𝑗 in 𝜋𝑖 . Then, we can obtain

that

∑
𝑣𝑗 ∈𝐷 𝑤 (𝑣 𝑗) ≤ 𝑘 − 𝑑 (𝑆), as the size of 𝜋𝑖 is no larger than 𝑐𝑣 (𝐷), where 𝑣 is a random vertex

in 𝜋𝑖 . Thus, the upper bound obtained in [11] is not tighter than that in Lemma 8. These findings

effectively demonstrate the tightness of our proposed upper bounds.

4.2 Finding a Heuristic Result
To find a heuristic result, we can make use of classical approach that iteratively selects a vertex

from𝐶 to expand 𝑆 , where 𝑆 and𝐶 are initialized as an empty set and𝑉 , respectively. Once no more

vertices from 𝐶 can be added to 𝑆 (i.e., 𝐶 becomes empty), we obtain a near-maximum maximal

𝑘-defective clique denoted as 𝑆∗. To further improve the size of 𝑆∗, we propose an ordering-based

heuristic approach, which is outlined as follows.

Let O = {𝑣1, 𝑣2, ..., 𝑣𝑛} be an ordering of vertices in 𝐺 . We define 𝑉 +𝑣𝑖 as the set of vertices in 𝐺

that rank higher than 𝑣𝑖 in the ordering O. Let 𝐺+𝑣𝑖 be the subgraph of 𝐺 induced by 𝑉 +𝑣𝑖 . Then, our
heuristic approach focuses on computing a near-maximum 𝑘-defective clique in a subgraph𝐺+𝑣𝑖 for

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

206:16 Qiangqiang Dai, Rong-Hua Li, Donghang Cui, & Guoren Wang

Algorithm 4: A Heuristic Algorithm

Input: The graph𝐺 = (𝑉 , 𝐸) and a parameter 𝑘 ≥ 0

Output: A near maximum 𝑘-defective clique 𝑆∗ in𝐺
1 Let {𝑣1, 𝑣2, ..., 𝑣𝑛 } be the degeneracy ordering of vertices in𝐺 ;

2 for 𝑖 = 𝑛 to 1 s.t. 𝑐𝑜𝑟𝑒 (𝑣𝑖) ≥ |𝑆∗ | − 𝑘 do
3 𝑆 ← {𝑣𝑖 };𝐶 ← 𝑁𝑣𝑖 (𝐺+𝑣𝑖) ;
4 while ∃𝑢 ∈ 𝐶 with 𝑑𝑢 (𝐶) < |𝑆∗ | − 𝑘 − 1 do
5 𝐶 ← 𝐶 \ {𝑢};
6 while𝐶 ≠ ∅ do
7 𝑣 ← a vertex in𝐶 with maximum degree (or maximum core number) in𝐺 (𝑆 ∪𝐶) ;
8 𝑆 ← 𝑆 ∪ {𝑣} and remove each vertex 𝑢 from𝐶 if 𝑑𝑢 (𝑆) is larger than 𝑘 − 𝑑 (𝑆) ;
9 while ∃𝑢 ∈ 𝐶 s.t. 𝑑𝑢 (𝑁𝑆 (𝐶)) < |𝑆∗ | − |𝑆 | − 𝑘 + 𝑑 (𝑆) do
10 Remove 𝑢 from𝐶 ;

11 if ∃𝑢 ∈ 𝑆 with 𝑑𝑢 (𝑁𝑆 (𝐶)) ≤ |𝑆∗ | − |𝑆 | − 𝑘 + 𝑑 (𝑆) then
12 𝑆 ← ∅;𝐶 ← ∅;

13 foreach 𝑣𝑗 ∈ 𝑁 =2
𝑣𝑖
(𝐺) s.t. 𝑗 > 𝑖 do

14 if 𝑑𝑣𝑗 (𝑆) ≥ |𝑆∗ | − 𝑘 + 𝑑 (𝑆) then𝐶 ← 𝐶 ∪ {𝑣𝑗 };

15 Further expand 𝑆 with vertices in𝐶 as described in lines 6-12;

16 if |𝑆∗ | < |𝑆 | then 𝑆∗ ← 𝑆 ;

17 return 𝑆∗;

each vertex 𝑣𝑖 . By executing this approach, we obtain several 𝑘-defective cliques, and the largest

among them is selected as the near-maximum 𝑘-defective clique of 𝐺 . Below, we also introduce

some pruning techniques throughout this process.

Pruning techniques. When expanding the set 𝑆 with vertices from 𝐶 , we observe that many

vertices in 𝐶 can be pruned effectively. Thus, we also employ three specific pruning techniques

based on the current near-maximum 𝑘-defective clique denoted as 𝑆∗.

• Distance-based pruning. By Property 2, we determine that if |𝑆∗ | ≥ 𝑘 + 2, the diameter of 𝐺 (𝑆∗)
is at most 2. Consequently, during the expansion of 𝑆 = {𝑣𝑖 }, only vertices in𝐺+𝑣𝑖 whose distance
to 𝑣𝑖 is not greater than 2 will be initialized to 𝐶 .

• Non-neighbor-based pruning. We obtain that any vertex in 𝐶 possessing more than 𝑘 − 𝑑 (𝑆)
non-neighbors in 𝑆 can be safely excluded from 𝐶 , as such vertices cannot contribute to the

formation of a larger 𝑘-defective clique when combined with 𝑆 .

• Common neighbor-based pruning. Let 𝑁𝑆 (𝐶) = {𝑢 ∈ 𝐶 |𝑆 ⊆ 𝑁𝑢 (𝐺)} be the set of common

neighbors of 𝑆 in 𝐶 . Given a vertex 𝑢 ∈ 𝐶 , if 𝑑𝑢 (𝑁𝑆 (𝐶)) < |𝑆∗ | − 𝑘 − |𝑆 | + 𝑑 (𝑆), it follows that
𝑢 cannot be part of a maximum 𝑘-defective clique with a size equal to or greater than |𝑆∗ |.
Consequently, such a vertex 𝑢 can be safely removed from 𝐶 .

Implementation details. Equipped with the proposed techniques, we outline our heuristic ap-

proach in Algorithm 4.

Initially, Algorithm 4 computes the degeneracy ordering of vertices in𝐺 using a method described

in [4]. Subsequently, the algorithm iteratively computes the near-maximum 𝑘-defective clique

containing 𝑣𝑖 in𝐺
+
𝑣𝑖
for each 𝑣𝑖 in the degeneracy ordering (lines 2-16). The algorithm constructs the

candidate set𝐶 with vertices in 𝑁𝑣𝑖 (𝐺+𝑣𝑖) to expand the current 𝑘-defective clique 𝑆 = {𝑣𝑖 }. Then, it
progressively selects a vertex 𝑣 from𝐶 with the largest degree (or maximum core number) to expand

𝑆 until 𝐶 = ∅. Notably, when a vertex 𝑣 is added to 𝑆 , all the remaining vertices in the candidate

set 𝐶 used to expand 𝑆 ∪ {𝑣} adhere to the non-neighbor-based pruning (line 8) and the common

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

Theoretically and Practically Efficient Maximum Defective Clique Search 206:17

Algorithm 5: The MDC Algorithm

Input: The graph𝐺 = (𝑉 , 𝐸) and a parameter 𝑘

Output: The maximum 𝑘-defective clique 𝑆∗ of𝐺
1 𝑆∗ returned by Algorithm 4;

2 𝐺 ← (|𝑆∗ | − 𝑘)-core of𝐺 ;

3 Let {𝑣1, 𝑣2, ..., 𝑣𝑛 } be the degeneracy ordering of vertices in𝐺 ;

4 for 𝑖 = 𝑛 to 1 s.t. 𝑐𝑜𝑟𝑒𝑣𝑖 (𝐺) ≥ |𝑆∗ | − 𝑘 do
5 𝑆 ← {𝑣𝑖 };𝐶1 ← 𝑁𝑣𝑖 (𝐺+𝑣𝑖) ;𝐶2 ← ∅;
6 while ∃𝑢 ∈ 𝐶1 with 𝑑𝑢 (𝐶1) < |𝑆∗ | − 𝑘 − 1 do
7 𝐶1 ← 𝐶1 \ {𝑢};
8 if |𝑆 ∪𝐶1 | ≤ |𝑆∗ | − 𝑘 then continue;
9 for each 𝑢 ∈ 𝑁 =2

𝑣𝑖
(𝐺+𝑣𝑖) do

10 if 𝑑𝑢 (𝐶1) ≥ |𝑆∗ | − 𝑘 then𝐶2 ← 𝐶2 ∪ {𝑢};
11 if |𝑆∗ | < 𝑘 + 1 then𝐶2 ← {𝑣𝑖+1, 𝑣𝑖+2, ..., 𝑣𝑛 } \𝐶1;

12 Coloring𝐺 (𝑆 ∪𝐶1 ∪𝐶2) with degeneracy ordering;

13 𝐵𝑟𝑎𝑛𝑐ℎ (𝑆,𝐶1 ∪𝐶2) ; // Equipped with the proposed upper bounds in Sec. 4.1

neighbor-based pruning (lines 4-5, lines 9-10). Furthermore, utilizing the distance-based pruning,

the algorithm further expands 𝑆 by considering the vertices with a distance of 2 from 𝑣𝑖 using a

similar technique as before (lines 13-16), where 𝑁 =2
𝑣𝑖
(𝐺) = {𝑢 ∈ 𝑉 |𝑢 ∉ 𝑁𝑣𝑖 (𝐺), 𝑁𝑢 (𝐺)∩𝑁𝑣𝑖 (𝐺) ≠ ∅}.

Finally, the heuristic algorithm terminates after each vertex in 𝑉 has been processed and returns

the largest 𝑘-defective clique detected as the final near-maximum 𝑘-defective clique of𝐺 (line 17).

The time complexity of Algorithm 4 is provided below.

Theorem 4.3. Let 𝑛′ (𝑚′) be the maximum number of vertices (edges) in 𝐺 (𝑆 ∪ 𝐶) obtained in
Algorithm 4. Then, the time complexity of Algorithm 4 is bounded by 𝑂 (𝑛(𝜅𝑛′ +𝑚′)).

Proof. It is evident that the algorithm requires at most 𝑂 (𝑚′) time to perform the common

neighbor-based pruning in 𝐺 (𝑆 ∪ 𝐶) (lines 4-5 and lines 9-10). Additionally, when a vertex 𝑣 is

added into 𝑆 , it necessitates at most 𝑂 (𝑛′) time to update the candidate set. Therefore, lines 7-8 of

Algorithm 4 consume at most 𝑂 (𝜅𝑛′) time, as at most 𝜅 vertices in 𝐶 can be added into 𝑆 . Hence,

the total time taken by Algorithm 4 is bounded by 𝑂 (𝑛(𝜅𝑛′ +𝑚′)). □

Note that the practical performance of Algorithm 4 can be highly efficient (as highlighted in

Sec. 5.2). This is mainly due to the fact that the size of 𝐶 in lines 2-12 is bounded by 𝛿 , which is

relatively small in real-world graphs. Moreover, for most subgraphs𝐺 (𝑆∪𝐶), the number of vertices

is much less than 𝑛′. Consequently, the practical performance of Algorithm 4 is considerably lower

than its worst-case time complexity.

4.3 The Proposed MDC Algorithm
By integrating all the above techniques, we propose ourMDC algorithm in Algorithm 5. Specifically,

it begins by employing the proposed heuristic algorithm (Algorithm 4) to acquire a near-maximum

𝑘-defective clique 𝑆∗ in𝐺 (line 1). Subsequently, this algorithm identifies a (|𝑆∗ | −𝑘)-core subgraph
and focuses mainly on computing the maximum 𝑘-defective clique of𝐺 within this subgraph (line 2).

This is because other vertices cannot be part of a 𝑘-defective clique with a size surpassing |𝑆∗ |.
The algorithm then iteratively computes the maximum 𝑘-defective clique containing 𝑣𝑖 within 𝐺 ,

following the reverse order of the degeneracy ordering (lines 3-12). Prior to the branching process,

this algorithm also employs the pruning techniques outlined in Sec. 4.2 to reduce the size of the

candidate set of 𝑆 = {𝑣𝑖 }. Notably, each vertex in the candidate set 𝐶1 ∪𝐶2 satisfies two conditions:

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

206:18 Qiangqiang Dai, Rong-Hua Li, Donghang Cui, & Guoren Wang

it is at most 2 distances away from 𝑣𝑖 , and it shares at least |𝑆∗ | −𝑘 common neighbors with 𝑣𝑖 (lines

5-10). Moreover, if the size of 𝑆 ∪𝐶1 is not larger than |𝑆∗ | −𝑘 , the computation for 𝑣𝑖 can be skipped

by our observations (line 8). Following this, the algorithm employs the degeneracy ordering to color

each vertex in 𝐺 (𝑆 ∪𝐶1 ∪𝐶2) (line 12), which serves as a prerequisite for Algorithm 3. Finally, the

algorithm invokes the 𝐵𝑟𝑎𝑛𝑐ℎ procedure developed in Sec. 3.3 to compute the maximum 𝑘-defective

clique containing 𝑣𝑖 in 𝐺 , and updates the current maximum result 𝑆∗ if a larger 𝑘-defective clique
is obtained (lines 13). Note that it shares the same worst-case time complexity with Algorithm 1,

but it equipped with several non-trivial and effective pruning techniques, thus Algorithm 5 is very

efficient in searching the maximum 𝑘-defective clique (as it confirmed in our experiments).

5 Experiments
In this section, we conduct extensive experiments to evaluate the efficiency of our algorithms.

Below, we first introduce the experimental setup, and then report the experimental results.

5.1 Experimental Setup

Algorithms. We implement an algorithm called MDC to identify the maximum 𝑘-defective clique

of𝐺 , which contains all proposed techniques as detailed in Algorithm 5. To assess the performance

of our proposed algorithms, we also use the state-of-the-art algorithms kDC, KDBB, and MADEC
as the baseline algorithms, where kDC, KDBB, andMADEC are the maximum 𝑘-defective clique

search algorithms developed in [11], [19], and [13] respectively. It is worth noting that due to the

absence of open-source code for KDBB, we utilize our own implementation for the experiments,

which exhibits better performance compared to the reported results in the literature. All the tested

algorithms are implemented in C++, and tested on a PC with one 2.2 GHz CPU and 64GB memory

running CentOS operating system.

Datasets. We employ three distinct sets of datasets to evaluate the efficiency of our proposed

algorithm. The first set of datasets, consisting of 139 massive real-world graphs, is originally

obtained from the Network Data Repository [48]. These datasets have been widely used in various

studies [18, 19, 64] and can be downloaded from http://lcs.ios.ac.cn/~caisw/graphs.html. The second

set of datasets is available at https://networkrepository.com/socfb.php, which includes 114 Facebook

graphs. Lastly, the third set of datasets comprises 84 DIMACS10 graphs, which can be accessed

at https://networkrepository.com/dimacs.php. All tested graphs have been utilized as benchmark

graphs for evaluating the performance of the maximum 𝑘-defective clique search algorithms [11, 19].

Parameters. In our experimental evaluations, we consider values of 𝑘 as 1, 5, 10, 15 and 20 following

a similar approach as [11, 13, 19]. Moreover, we note that the size of the maximum 𝑘-defective

clique in certain datasets is relatively small. Consequently, setting 𝑘 to excessively large values may

lack meaningful implications. Thus, we also impose an additional constraint of 𝑘 < 𝜅 − 1, where 𝜅
is the size of the maximum 𝑘-defective clique in a given graph 𝐺 .

Note that in various real-world graphs like social networks and web graphs, the communities

tend to be relatively large (often exceeding 20 or even 30). Such a large size demonstrates that the

communities obtained from the maximum 𝑘-defective clique still exhibit very high densities even

when setting larger values for 𝑘 . For example, when 𝑘 = 20, the density of a 𝑘-defective clique with

a size of at least 30 is approximately 0.95. Moreover, as shown in the experimental results in Table 3,

we can observe that there are many real-world graph with the size of maximum 𝑘-defective clique

no less than 24 when 𝑘 = 1. These demonstrate that developing a high performance maximum

𝑘-defective search algorithm for larger 𝑘 values is also very necessary for handling real-world

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

http://lcs.ios.ac.cn/~caisw/graphs.html
https://networkrepository.com/socfb.php
https://networkrepository.com/dimacs.php

Theoretically and Practically Efficient Maximum Defective Clique Search 206:19

Table 3. Statistics of benchmark real-world graphs, where 𝛿 , 𝐶𝑙𝑞, and 𝜅 represent the degeneracy size, the
size of the maximum clique, and the size of the maximum 𝑘-defective clique of 𝐺 , respectively

ID Dataset 𝑛 𝑚 𝛿 𝐶𝑙𝑞
𝜅 when 𝑘 =

ID Dataset 𝑛 𝑚 𝛿 𝐶𝑙𝑞
𝜅 when 𝑘 =

1 5 10 15 20 1 5 10 15 20

D1 ia-enron-large 33.6K 180K 43 20 21 23 25 26 27 D19 socfb-Texas80 31.6K 1.2M 78 59 60 63 65 68 69

D2 sc-ldoor 909K 20.8M 34 21 21 21 22 23 23 D20 socfb-Texas84 36.3K 1.6M 81 51 52 55 58 60 61

D3 sc-nasasrb 54.8K 1.3M 35 24 24 24 24 25 25 D21 socfb-Tulane29 7.8K 284K 68 38 39 42 45 47 48

D4 sc-pkustk11 87.8K 2.6M 47 36 36 36 36 37 37 D22 socfb-UF 35.1K 1.5M 83 55 56 59 62 64 66

D5 sc-pkustk13 94.8K 3.3M 41 36 36 36 37 37 38 D23 socfb-UGA50 24.3K 1.2M 86 52 53 55 58 59 61

D6 sc-pwtk 218K 5.6M 35 24 24 24 25 26 27 D24 socfb-Vanderbilt48 8.06K 427K 86 45 46 50 52 55 56

D7 sc-shipsec1 140K 1.7M 24 24 24 24 25 26 27 D25 socfb-Wisconsin87 23.8K 836K 60 37 38 40 42 44 46

D8 sc-shipsec5 179K 2.2M 29 24 24 24 25 26 27 D26 soc-digg 771K 5.9M 236 50 51 53 55 58 61

D9 scc_fb-forum 488 71K 272 266 266 268 269 270 271 D27 soc-flixster 2.5M 7.9M 68 31 32 36 39 41 42

D10 scc_reality 6.8K 4.7M 1235 1236 1236 1236 1237 1238 1239 D28 soc-gowalla 197K 950K 51 29 30 31 32 33 34

D11 socfb-Amherst41 2.2K 90.9K 63 21 22 25 28 30 32 D29 soc-orkut 3M 106M 230 47 48 50 53 55 57

D12 socfb-Auburn71 18.4K 973K 95 57 58 61 63 65 67 D30 soc-pokec 1.6M 22.4M 47 29 30 31 32 33 34

D13 socfb-A-anon 3.1M 23.6M 74 25 26 28 30 32 34 D31 soc-slashdot 70K 359K 53 26 27 30 32 34 36

D14 socfb-B-anon 2.9M 20.9M 63 24 25 28 30 32 33 D32 soc-youtube 496K 1.9M 49 16 17 20 22 23 —

D15 socfb-Columbia2 11.7K 444K 66 31 32 33 35 37 39 D33 tech-as-skitter 1.7M 11.1M 111 67 68 70 72 74 75

D16 socfb-Duke14 9.9K 506K 85 34 35 38 40 42 44 D34 tech-WHOIS 7.5K 56.9K 88 58 59 62 64 67 69

D17 socfb-FSU53 27.7K 1.03M 81 56 57 60 63 65 67 D35 web-spam 4.8K 37.4K 35 20 21 21 23 24 26

D18 socfb-Indiana 29.7K 1.3M 76 48 49 51 53 55 57 D36 web-uk-2005 130K 11.7M 499 500 500 500 500 500 500

graphs. Thus, in our experiments, we also evaluate the performance of the proposedMDC algorithm

for larger value of 𝑘 (i.e., 𝑘 grows to 20).

5.2 Experimental Results

Exp-1: Results on representative benchmark graphs. In this experiment, we evaluate the

runtime of various algorithms in finding the maximum 𝑘-defective clique on representative graphs.

Table 3 shows the detailed statistics of 36 benchmark real-world graphs, where the columns 𝛿

and 𝐶𝑙𝑞 denote the degeneracy and the size of the maximum clique of the graph, respectively, the

columns “𝜅 when 𝑘 = 1” represent the size of the maximum 𝑘-defective clique 𝜅 in the graph under

the specific value of 𝑘 . Table 4 shows the runtime ofMDC on different datasets with varying 𝑘 ; and

Fig. 5 displays the speedup ratio ofMDC over the best performance between kDC and KDBB in

terms of runtime, where the runtime of each algorithm also incorporates the pre-processing time

of the degeneracy ordering, "—" denotes that the algorithm failed to complete the computations

within a time threshold of 10800 seconds (3 hours). From the results, we can obtain that except

for a few datasets that are easily processed by all tested algorithms, the runtime of our algorithm

MDC consistently outperforms all existing algorithms (kDC and KDBB) across different values of
𝑘 . Specifically, our algorithm achieves a speedup of 3 orders of magnitudes over kDC and KDBB
on most parameter settings. For instance, when 𝑘 = 1 and considering the sc-ldoor dataset, MDC
only requires 7.57 seconds to identify the maximum 𝑘-defective clique, whereas both kDC and

KDBB fail to complete the computation within the given 10800 seconds. Furthermore, it can be

observed that the time consumption of our algorithm is relatively insensitive to an increase in 𝑘 on

most datasets. Conversely, existing algorithms exhibit a sharp increase in runtime as 𝑘 increases.

For example, on the socfb-Texas84 dataset, when 𝑘 is set to 1 and 15, MDC takes only 0.48 and

2.84 seconds, respectively, to find the maximum 𝑘-defective clique. However, the speedup ratios

of MDC over the state-of-the-art kDC are 14.14 and ≥104, respectively, under the same 𝑘 settings.

These experimental results strongly indicate the excellent practical efficiency of our algorithms.

Moreover, from the results presented in Table 3 and Table 4, we observe a significant dependence

of our algorithm MDC’s runtime on both the graph density and the discrepancy between 𝛿 and

𝐶𝑙𝑞. Specifically, on real-world graphs where the density is not particularly high and the difference

between 𝛿 and𝐶𝑙𝑞 is relatively small, our algorithm exhibits exceptional performance. For example,

on dataset sc-pkustk13 with the difference of 5 between 𝛿 and 𝐶𝑙𝑞, our algorithm can identify the

maximum defective clique within just 0.67 second when 𝑘 = 1, and even with 𝑘 = 20, the time

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

206:20 Qiangqiang Dai, Rong-Hua Li, Donghang Cui, & Guoren Wang

Table 4. Runtime ofMDC on benchmark real-world graphs with a time threshold of 3 hours (in seconds)

ID

Runtime of MDC when 𝑘 =
ID

Runtime ofMDC when 𝑘 =
ID

Runtime of MDC when 𝑘 =
ID

Runtime of MDC when 𝑘 =

1 5 10 15 20 1 5 10 15 20 1 5 10 15 20 1 5 10 15 20

D1 0.02 0.05 0.52 6.03 69.26 D10 0.09 0.31 1.22 4.09 13.04 D19 0.35 0.41 0.43 0.47 1.42 D28 0.02 0.04 0.05 0.45 2.98

D2 7.57 35.12 983.52 3792.4 — D11 0.12 0.47 2.00 23.50 41.92 D20 0.48 0.68 0.97 2.84 14.03 D29 80.5 194.92 352.8 468.1 2487.2

D3 0.16 0.45 2.44 30.56 173.77 D12 0.42 0.48 0.52 1.28 5.30 D21 0.12 0.13 0.25 1.19 5.53 D30 5.39 4.98 7.82 8.91 14.28

D4 0.31 0.31 0.41 1.55 9.12 D13 7.82 9.45 11.23 35.10 135.56 D22 0.53 0.58 0.58 0.88 1.94 D31 0.06 0.28 1.32 9.10 91.67

D5 0.67 0.85 3.18 9.89 42.01 D14 6.75 7.67 9.92 42.37 409.96 D23 0.61 0.68 0.58 8.05 60.57 D32 0.45 3.41 26.76 637.83 —

D6 0.98 2.89 11.24 111.72 329.97 D15 0.32 0.38 0.43 1.00 2.29 D24 0.22 0.23 0.29 0.55 2.84 D33 0.13 0.15 0.20 0.27 1.09

D7 0.03 0.03 0.28 1.47 5.80 D16 0.60 2.24 11.06 54.82 509.23 D25 0.33 0.31 0.40 0.49 1.62 D34 0.02 0.03 0.09 2.04 17.42

D8 0.07 0.13 0.32 1.50 4.04 D17 0.20 0.36 0.24 0.29 0.51 D26 39.8 46.6 120.3 621.4 9903.9 D35 0.004 0.029 0.35 6.30 16.17

D9 0.03 0.04 0.18 0.34 0.81 D18 0.57 0.65 0.68 0.72 0.84 D27 0.61 1.08 2.54 18.69 374.71 D36 0.03 0.04 0.05 0.07 0.10

0
10

1
10

2
10

3
≥10

4

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18

S
p
ee

d
u
p
 r

at
io k=1 k=5 k=10 k=15 k=20

(a) Datasets from D1 to D18

0
10

1
10

2
10

3
≥10

4

D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D31 D32 D33 D34 D35 D36

S
p
ee

d
u
p
 r

at
io k=1 k=5 k=10 k=15 k=20

(b) Datasets from D19 to D36

Fig. 5. Speedup ratio ofMDC over the best performance among kDC and KDBB

 60

 70

 80

 90

 100

 110

 120

 130

 140

1 5 10 100 1000 10800

S
o

lv
e
d

 i
n

s
ta

n
c
e
s

Seconds

MDC

kDC

KDBB

MADEC

(a) 𝑘 = 1

 40

 60

 80

 100

 120

 140

1 5 10 100 1000 10800

S
o

lv
e
d

 i
n

s
ta

n
c
e
s

Seconds

MDC

kDC

KDBB

MADEC

(b) 𝑘 = 5

 20

 40

 60

 80

 100

 120

 140

1 5 10 100 1000 10800

S
o

lv
e
d

 i
n

s
ta

n
c
e
s

Seconds

MDC

kDC

KDBB

MADEC

(c) 𝑘 = 10

 20

 40

 60

 80

 100

 120

 140

1 5 10 100 1000 10800

S
o

lv
e
d

 i
n

s
ta

n
c
e
s

Seconds

MDC

kDC

KDBB

MADEC

(d) 𝑘 = 15

 20

 40

 60

 80

 100

 120

 140

1 5 10 100 1000 10800

S
o

lv
e
d

 i
n

s
ta

n
c
e
s

Seconds

MDC

kDC

KDBB

MADEC

(e) 𝑘 = 20

 0

 20

 40

 60

 80

 100

 120

1 5 10 100 1000 10800

S
o

lv
e
d

 i
n

s
ta

n
c
e
s

Seconds

MDC

kDC

KDBB

MADEC

(f) 𝑘 = 1

 0

 20

 40

 60

 80

 100

 120

1 5 10 100 1000 10800

S
o

lv
e
d

 i
n

s
ta

n
c
e
s

Seconds

MDC

kDC

KDBB

MADEC

(g) 𝑘 = 5

 0

 20

 40

 60

 80

 100

 120

1 5 10 100 1000 10800

S
o

lv
e
d

 i
n

s
ta

n
c
e
s

Seconds

MDC

kDC

KDBB

MADEC

(h) 𝑘 = 10

 0

 20

 40

 60

 80

 100

 120

1 5 10 100 1000 10800

S
o

lv
e
d

 i
n

s
ta

n
c
e
s

Seconds

MDC

kDC

KDBB

MADEC

(i) 𝑘 = 15

 0

 20

 40

 60

 80

 100

 120

1 5 10 100 1000 10800

S
o

lv
e
d

 i
n

s
ta

n
c
e
s

Seconds

MDC

kDC

KDBB

MADEC

(j) 𝑘 = 20

 10

 20

 30

 40

 50

 60

 70

 80

1 5 10 100 1000 10800

S
o

lv
e
d

 i
n

s
ta

n
c
e
s

Seconds

MDC

kDC

KDBB

MADEC

(k) 𝑘 = 1

 0

 20

 40

 60

 80

 100

1 5 10 100 1000 10800

S
o

lv
e
d

 i
n

s
ta

n
c
e
s

Seconds

MDC

kDC

KDBB

MADEC

(l) 𝑘 = 5

 0

 20

 40

 60

 80

 100

1 5 10 100 1000 10800

S
o

lv
e
d

 i
n

s
ta

n
c
e
s

Seconds

MDC

kDC

KDBB

MADEC

(m) 𝑘 = 10

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 5 10 100 1000 10800

S
o

lv
e
d

 i
n

s
ta

n
c
e
s

Seconds

MDC

kDC

KDBB

MADEC

(n) 𝑘 = 15

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 5 10 100 1000 10800

S
o

lv
e
d

 i
n

s
ta

n
c
e
s

Seconds

MDC

kDC

KDBB

MADEC

(o) 𝑘 = 20

Fig. 6. Number of solved instances of various algorithms on massive graphs with different time thresholds
(where sub-figures (a)-(e) are real-world graphs, (f)-(j) are Facebook graphs, and (k)-(o) are DIMACS10 graphs)

consumption remains within 42.01 seconds. This efficiency stems from the ability of our pivot-

based technique to minimize the number of sub-branches generated during recursive calls, thereby

greatly reducing redundant computations. Furthermore, on these graphs, the size of the maximum

𝑘-defective clique closely aligns with our proposed advanced color-based upper bound, leading to

enhanced pruning capabilities and further improving the overall efficiency of our algorithm.

Exp-2: Solved instance of various algorithms on massive graphs. In this experiment, we

aim to evaluate the performance of our proposed algorithm using a large collection of datasets,

which includes 139 real-world graphs, 114 Facebook graphs, and 84 DIMACS10 graphs. Fig. 6

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

Theoretically and Practically Efficient Maximum Defective Clique Search 206:21

10
0

10
1

10
2

10
3

INF

1 5 10 15 20 25 30

T
im

e
 (

s
e
c
)

k

MDC

kDC

KDBB

MADEC

(a) sc-pkustk13

10
0

10
1

10
2

10
3

INF

1 5 10 15 20 25 30

T
im

e
 (

s
e
c
)

k

MDC

kDC

KDBB

MADEC

(b) socfb-Texas84

10
0

10
1

10
2

10
3

INF

1 5 10 15 20 25 30

T
im

e
 (

s
e
c
)

k

MDC

kDC

KDBB

MADEC

(c) soc-flixster

10
-2

10
-1

10
0

10
1

10
2

10
3

INF

1 5 10 15 20 25 30

T
im

e
 (

s
e
c
)

k

MDC

kDC

KDBB

MADEC

(d) tech-WHOIS

Fig. 7. Runtime of various algorithms with 𝑘 growing

 100

 105

 110

 115

 120

 125

 130

 135

 140

1 5 10 100 1000 10800

S
o

lv
e
d

 i
n

s
ta

n
c
e
s

Seconds

MDC

nHMDC

(a) 𝑘 = 1

 100

 105

 110

 115

 120

 125

 130

 135

 140

1 5 10 100 1000 10800

S
o

lv
e
d

 i
n

s
ta

n
c
e
s

Seconds

MDC

nHMDC

(b) 𝑘 = 5

 90

 100

 110

 120

 130

 140

1 5 10 100 1000 10800

S
o

lv
e
d

 i
n

s
ta

n
c
e
s

Seconds

MDC

nHMDC

(c) 𝑘 = 10

 80

 90

 100

 110

 120

 130

 140

1 5 10 100 1000 10800

S
o

lv
e
d

 i
n

s
ta

n
c
e
s

Seconds

MDC

nHMDC

(d) 𝑘 = 15

Fig. 8. Efficiency ofMDC without the heuristic approach on 139 real-world graphs

showcases the number of solved instances with varying time thresholds for different values of 𝑘 .

From this figure, we observe that our algorithmMDC consistently outperforms the state-of-the-art

algorithms, namely kDC, KDBB, andMADEC, in terms of the number of solved instances. These

results strongly validate the efficiency of our proposed algorithm in efficiently identifying the

maximum 𝑘-defective clique of 𝐺 . Furthermore, with increasing values of 𝑘 , we observe that the

number of instances solved by MDC exhibits minimal variations, while the existing algorithms

such as kDC, KDBB and MADEC experience a significant decrease. For instance, when 𝑘 = 1,

MDC, kDC, KDBB, and MADEC successfully solve 135, 129, 113, and 87 instances, respectively,

within 100 seconds. However, as the value of 𝑘 grows to 15,MDC can solve 123 instances, while

kDC, KDBB, andMADEC can only handle 89, 57, and 38 instances, respectively, under the same

settings. This further emphasizes the efficiency of our proposed techniques in reducing unnecessary

computations, even when confronted with larger 𝑘 .

Exp-3: Runtime of various algorithms with 𝑘 growing. In this experiment, we further evaluate

the performance trend of each algorithm on 4 representative datasets with 𝑘 growing. Fig. 7

illustrates the detailed experimental results for all tested algorithms. In cases where the algorithm

fails to complete the computation with a time threshold of 3 hours, the runtime is denoted as

“INF". Note that similar results can also be obtained from other datasets. As can be seen, our

algorithm MDC successfully solves all tested graphs even when 𝑘 is increased up to 30. However,

the state-of-the-arts kDC, KDBB, andMADEC are unable to complete the computations within a

time threshold of 3 hours on most parameter settings. Furthermore, we observe that the runtime

of our algorithm MDC increases smoothly with the increase of 𝑘 , whereas all existing algorithms

exhibit sharp increases. For instance, on the sc-pkustk13 dataset, when 𝑘 takes values of 1, 10, and

20, MDC completes the computations in 0.63, 3.14, and 41.97 seconds, respectively. However, the

existing algorithm kDC requires 6.46, 1956.5, and 8153.1 seconds, respectively. This experimental

result demonstrates that our algorithm maintains excellent pruning performance even as 𝑘 grows

significantly large.

Exp-4: Efficiency of the proposed algorithm without the heuristic approach. We define our

algorithmMDC without the heuristic approach as nHMDC, which refers to Algorithm 5 without

lines 1-2. In this experiment, we test the effectiveness of algorithm nHMDC in finding the maximum

𝑘-defective clique of 𝐺 . Fig. 8 illustrates the number of solved instanced of nHMDC and MDC
on 139 real-world graphs with different time thresholds when varying 𝑘 . From the results, we

note that MDC consistently solves more instances than nHMDC. This disparity arises because the

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

206:22 Qiangqiang Dai, Rong-Hua Li, Donghang Cui, & Guoren Wang

 115

 120

 125

 130

 135

 140

1 5 10 100 1000 10800

S
o

lv
e
d

 i
n

s
ta

n
c
e
s

Seconds

MDC

MDC-N

MDC-C

MDC-L

(a) 𝑘 = 1

 90

 100

 110

 120

 130

 140

1 5 10 100 1000 10800

S
o

lv
e
d

 i
n

s
ta

n
c
e
s

Seconds

MDC

MDC-N

MDC-C

MDC-L

(b) 𝑘 = 5

 70

 80

 90

 100

 110

 120

 130

 140

1 5 10 100 1000 10800

S
o

lv
e
d

 i
n

s
ta

n
c
e
s

Seconds

MDC

MDC-N

MDC-C

MDC-L

(c) 𝑘 = 10

 40

 60

 80

 100

 120

 140

1 5 10 100 1000 10800

S
o

lv
e
d

 i
n

s
ta

n
c
e
s

Seconds

MDC

MDC-N

MDC-C

MDC-L

(d) 𝑘 = 15

Fig. 9. Efficiency ofMDC with various upper bounds on 139 real-world graphs

proposed heuristic algorithm can efficiently identify a near-maximum 𝑘-defective clique, enabling

significant pruning of vertices based on the obtained result. Consequently, the efficiency of our

algorithm is substantially improved. Nevertheless, it is worth noting that nHMDC still outperforms

the existing solutions KDBB and MADEC in most parameter settings, reinforcing the effectiveness

of the proposed branching rules in identifying the maximum 𝑘-defective clique in graph 𝐺 .

Exp-5: Efficiency of proposed upper bound techniques. In this experiment, we test the ef-

fectiveness of the proposed upper bounds. We designate MDC-N as Algorithm 5 without any

upper bounds, and let MDC-C and MDC-L be Algorithm 5 augmented with core-based (Lemma 5)

and color-based (Lemma 6) upper bounds, respectively. We conduct experiments on a set of 139

real-world graphs, as described in Fig. 9. As can be seen, we note thatMDC consistently demon-

strates superior performance compared to all other tested algorithms. This can be attributed to

the tightness of the proposed advanced color-based upper bound and the algorithm’s efficiency in

computing our proposed upper bound. Additionally, we observe that within a given runtime thresh-

old, the gap in number of solved instances between the algorithm MDC and the other algorithms

(MDC-N,MDC-C, andMDC-L) increases as 𝑘 grows. For instance, with a time threshold of 100

seconds, when 𝑘 = 1,MDC solves 135 instances, while both MDC-N,MDC-C, andMDC-L solve

133 instances each. However, when 𝑘 grows to 10, MDC solves 126 instances, whereas MDC-N,
MDC-C, andMDC-L only manage to solve 96, 102, and 107 instances, respectively. This experiment

highlights the efficiency of the proposed upper bound pruning technique.

Exp-6: Efficiency of proposed pivoting rules. This experiment aims to evaluate the performance

of the proposed pivoting rules. Let us denote MDC-R the algorithm MDC without the pivot-based

techniques developed in Sec. 3.1 (i.e., the procedure 𝑏𝑟𝑎𝑛𝑐ℎ without lines 15-29). Table 5 presents

the experimental results obtained by executingMDC andMDC-R on 6 representative real-world

graphs with varying 𝑘 , and the results on other datasets are consistent. From this figure, we note that

the runtime of MDC consistently outperforms that of MDC-R across all tested datasets. Moreover,

as 𝑘 increases, the performance of MDC-R experiences a significant decline compared to MDC.
These findings confirm that our proposed pivoting rules is indeed efficient in reducing unnecessary

branches of the search algorithm.

Exp-7: Results on different synthetic graphs. To further investigate the relationship between

the efficiency of our proposed algorithm MDC and graph properties, we employed the graph

analysis tool NetworkX (https://networkx.org/) to generate a diverse set of synthetic graphs with

varying degree distributions and densities. Subsequently, we evaluated the runtime of various

algorithms on these synthetic graphs. Table 6 showcases the runtime ofMDC for different values

of 𝑘 and 𝜌 on synthetic graphs generated using uniform and power-law distributions, where

𝜌 = 2𝑚
𝑛∗(𝑛−1) denotes the graph density. For brevity, we exclude the results obtained from synthetic

graphs generated by binomial and Gaussian distributions, as the insights derived from these graphs

align consistently with those derived from graphs with uniform or power-law distributions. From

Table 6, it becomes apparent that the performance of our algorithm varies notably on synthetic

graphs generated by uniform distributions as 𝑘 increases, whereas it consistently exhibits strong

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

https://networkx.org/

Theoretically and Practically Efficient Maximum Defective Clique Search 206:23

Table 5. Runtime of MDC without pivoting rules
(in seconds)

Datasets

𝑘 = 1 𝑘 = 5 𝑘 = 10 𝑘 = 15

MDC MDC-R MDC MDC-R MDC MDC-R MDC MDC-R
sc-nasasrb 0.16 0.23 0.45 0.66 2.44 3.16 30.56 38.92

socfb-Duke14 0.60 1.53 2.24 39.59 11.06 412.53 54.82 1460.9

socfb-Texas84 0.48 0.55 0.68 1.45 0.97 20.66 2.84 68.3

soc-digg 39.8 50.01 46.6 76.29 120.3 1622.7 621.4 —

soc-flixster 0.61 0.59 1.08 7.91 2.54 139.57 18.69 1177.4

tech-WHOIS 0.02 0.02 0.03 0.07 0.09 4.88 2.04 130.3

Table 6. Runtime of MDC on synthetic graphs (in
seconds)

Distribution 𝜌 𝛿 𝐶𝑙𝑞
𝑘 = 1 𝑘 = 5 𝑘 = 10 𝑘 = 15 𝑘 = 20

𝜅 MDC 𝜅 MDC 𝜅 MDC 𝜅 MDC 𝜅 MDC
0.2 40 5 6 0.07 8 4.10 9 101.88 10 324.74 11 307.63

Uniform 0.3 60 7 8 0.43 9 42.75 11 428.24 12 3356.3 — —

(𝑛 = 200) 0.4 80 9 9 1.65 11 159.49 13 2017.0 — — — —

0.5 100 10 11 8.68 13 1011.3 — — — — — —

0.2 24 12 13 0.001 15 0.007 17 0.28 18 1.43 20 11.95

Power-law 0.3 38 19 20 0.001 23 0.005 24 0.16 25 1.42 26 7.07

(𝑛 = 200) 0.4 56 27 28 0.001 31 0.005 33 0.06 34 0.49 35 2.63

0.5 64 44 45 0.003 47 0.003 48 0.01 50 0.13 51 0.84

performance across synthetic graphs generated by power-law distributions, regardless of changes

in 𝑘 or 𝜌 . This discrepancy in performance can be attributed to the significant difference between

𝛿 and 𝐶𝑙𝑞 observed on uniformly distributed synthetic graphs, whereas this dissimilarity is less

pronounced in power-law distributed synthetic graphs. The pronounced difference between 𝛿 and

𝐶𝑙𝑞 poses challenges for our proposed pivot-based technique, particularly in reducing the number

of sub-branches generated during recursive calls, consequently diminishing the pruning efficiency

of our algorithm. Moreover, given that real-world networks predominantly follow power-law

distributions, these findings also confirm the results obtained in Exp-1.

In addition, we also assess the speedup achieved by MDC over the best performance among

existing solutions, namely kDC, KDBB, andMADEC, the results of which are depicted in Fig. 10. It

is noteworthy that if all algorithms fail to complete computations within 3 hours, we denote the

speedup ratio of MDC over the state-of-the-art algorithm as “INF”. As observed, our algorithm

consistently surpasses the state-of-the-art solution across most synthetic graphs, even in scenarios

where processing proves challenging for our algorithm. For instance, on a uniform distributed

synthetic graph with 𝑘 = 5 and 𝜌 = 0.4, MDC completes computation in merely 159.49 seconds,

exhibiting a speedup of 7.49 times compared to the state-of-the-art algorithm kDC. These findings
underscore the efficiency of our algorithm in comparison to existing solutions for identifying the

maximum 𝑘-defective clique of 𝐺 across diverse graph structures.

6 Related Works

Maximum clique search. The problem of identifying the maximum clique in a graph 𝐺 has

been proven to be NP-hard [8], with approximating a satisfactory solution being a challenging

task [65]. Over the past few decades, numerous exact algorithms have been developed to tackle

this problem [10, 27–29, 41, 49, 50, 53–55]. Most of these algorithms are built upon a branch-and-

bound framework, and employing various enumeration strategies to find the maximum clique.

Among the existing approaches, those proposed by Tomita et al. [53–55] and Li et al. [27–29] have

gained significant popularity. Specifically, Tomita et al. [53] introduced an algorithm based on

degeneracy ordering and further improved it using the graph recoloring technique [55] and the

adjunct coloring-based ordering [54]. On the other hand, Li et al. proposed a branch-and-bound

algorithm based on MaxSAT reasoning [29], and further improving it with incremental upper

bounds [28] and dynamic and static vertex ordering strategies [27]. Additionally, several parallel

approaches utilizing multi-cores have also been developed to enhance practical efficiency [49, 50].

However, the aforementioned upper bound techniques based on coloring and MaxSAT reasoning

face challenges when extended to solve the problem of finding the maximum 𝑘-defective clique,

wherein the subgraph allows at most 𝑘 missing edges. To address this issue, this paper introduces a

novel upper bound approach based on graph coloring, which significantly differs from existing

color-based upper bounds.

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

206:24 Qiangqiang Dai, Rong-Hua Li, Donghang Cui, & Guoren Wang

0

10
1

10
2

10
3

INF

k=1 k=5 k=10 k=15 k=20

S
p
ee

d
u
p
 r

at
io

ρ=0.2
ρ=0.3
ρ=0.4
ρ=0.5

(a) Uniform graphs (𝑛 = 200)

0

10
1

10
2

10
3

10
4

k=1 k=5 k=10 k=15 k=20

S
p
ee

d
u
p
 r

at
io

ρ=0.2
ρ=0.3

ρ=0.4
ρ=0.5

(b) Power-law graphs (𝑛 = 200)

Fig. 10. Speedup ratio ofMDC over the best performance between kDC, KDBB, andMADEC on synthetic
graphs

Maximum relaxed-clique search. Since the clique model is often too restrictive for many real-

world applications, several relaxed-clique models have also been developed to address this limitation

[45]. These include the 𝑘-plex [52], 𝑠-clique [45], and 𝛾-quasi-clique [31], and others. Among these

models, significant attention has been given to the problems of finding the maximum 𝑘-plex

[3, 12, 18, 22, 35, 38, 61, 64] and maximum 𝛾-quasi-clique [34, 36, 40, 42, 43, 47, 58] in recent years.

Regarding the maximum 𝑘-plex problem, Balasundaram et al. [3] proposed an integer programming

formulation and a branch-and-cut algorithm. McClosky et al. [35] introduced a combinatorial

algorithm based on co-𝑘-plex coloring as an upper bound technique. Xiao et al. [61] developed an

exact algorithmwith a time complexity of𝑂 (𝑃 (𝑛)𝛼𝑛), employing a symmetric branching rule, where

𝛼 < 2. More recently, several novel techniques have also been developed to further improve the

efficiency, including dynamic vertex selection strategies [18], second-order reduction and coloring-

based upper bounds [64], partition-based upper bounds [22], and exploiting small dense subgraphs

[12]. Concerning the maximum 𝛾-quasi-clique problem, Pattillo et al. [43] and Veremyev et al.

[58] formulated the problem using integer programming. Pajouh et al. [40], Pastukhov et al. [42],

and Ribeiro et al. [47] respectively developed branch-and-bound algorithms incorporating various

pruning techniques. Additionally, upper bounds on the maximum 𝛾-quasi-clique number have been

further explored in [34, 36]. Unfortunately, all these existing algorithms still face challenges when

efficiently extended to solve the problem of finding the maximum 𝑘-defective clique. In this paper,

we propose a theoretically and practically efficient solution to find the maximum 𝑘-defective clique

of a given graph 𝐺 .

7 Conclusion
In this paper, we focus on the problem of identifying the maximum 𝑘-defective clique of a given

graph 𝐺 . To address this problem, we propose an efficient search algorithm accompanied by a

series of novel optimization techniques. Specifically, our algorithm leverages newly-developed

graph reduction rules and a pivot-based branching technique. Our analysis demonstrates that the

proposed algorithm achieves a time complexity of𝑂 (𝑚𝛾𝑛
𝑘
), where 𝛾𝑘 is a real value strictly less than

2. To further enhance efficiency, we also present an efficient pruning algorithm based on several

carefully-designed upper bounding techniques. Moreover, we make additional improvements to

our algorithm by incorporating an ordering-based heuristic algorithm as the preprocessing step.

Finally, we conduct comprehensive experiments to validate the effectiveness and efficiency of our

proposed approaches, and the results demonstrate that our algorithm achieves a speedup of 3 orders

of magnitude over the state-of-the-art solutions.

Acknowledgments
This work was partially supported by (i) the National Science and Technology Major Project

2020AAA0108503, (ii) NSFC Grants U2241211 and 62072034, (iii) the China National Postdoctoral

Program for Innovative Talents BX20240467, and (iv) the China Postdoctoral Science Foundation

2023M740245. Rong-Hua Li is the corresponding author of this paper.

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

Theoretically and Practically Efficient Maximum Defective Clique Search 206:25

References
[1] Eytan Adar and Christopher Ré. 2007. Managing Uncertainty in Social Networks. IEEE Data Eng. Bull. 30, 2 (2007),

15–22.

[2] Charu C. Aggarwal. 2011. Social Network Data Analytics. Springer.
[3] Balabhaskar Balasundaram, Sergiy Butenko, and Illya V. Hicks. 2011. Clique Relaxations in Social Network Analysis:

The Maximum k-Plex Problem. Oper. Res. 59, 1 (2011), 133–142.
[4] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) Algorithm for Cores Decomposition of Networks. CoRR

cs.DS/0310049 (2003).

[5] Punam Bedi and Chhavi Sharma. 2016. Community detection in social networks. Wiley interdisciplinary reviews: Data
mining and knowledge discovery 6, 3 (2016), 115–135.

[6] Vladimir Boginski, Sergiy Butenko, and PanosMPardalos. 2005. Statistical analysis of financial networks. Computational
statistics & data analysis 48, 2 (2005), 431–443.

[7] Vladimir Boginski, Sergiy Butenko, and Panos M Pardalos. 2006. Mining market data: A network approach. Computers
& Operations Research 33, 11 (2006), 3171–3184.

[8] Immanuel M. Bomze, Marco Budinich, Panos M. Pardalos, and Marcello Pelillo. 1999. The Maximum Clique Problem.

In Handbook of Combinatorial Optimization. 1–74.
[9] Coenraad Bron and Joep Kerbosch. 1973. Finding All Cliques of an Undirected Graph (Algorithm 457). Commun. ACM

16, 9 (1973), 575–576.

[10] Lijun Chang. 2020. Efficient maximum clique computation and enumeration over large sparse graphs. VLDB J. 29, 5
(2020), 999–1022.

[11] Lijun Chang. 2023. Efficient Maximum k-Defective Clique Computation with Improved Time Complexity. Proc. ACM
Manag. Data 1, 3 (2023), 209:1–209:26.

[12] Lijun Chang, Mouyi Xu, and Darren Strash. 2022. Efficient Maximum k-Plex Computation over Large Sparse Graphs.

Proc. VLDB Endow. 16, 2 (2022), 127–139.
[13] Xiaoyu Chen, Yi Zhou, Jin-Kao Hao, and Mingyu Xiao. 2021. Computing maximum k-defective cliques in massive

graphs. Comput. Oper. Res. 127 (2021), 105131.
[14] Qiangqiang Dai, Rong-Hua Li, Meihao Liao, and Guoren Wang. 2023. Maximal Defective Clique Enumeration. Proc.

ACM Manag. Data 1, 1 (2023), 77:1–77:26.
[15] Nan Du, Bin Wu, Xin Pei, Bai Wang, and Liutong Xu. 2007. Community detection in large-scale social networks. In

WebKDD and SNA-KDD workshop. 16–25.
[16] David Eppstein, Maarten Löffler, and Darren Strash. 2010. Listing All Maximal Cliques in Sparse Graphs in Near-Optimal

Time. In ISAAC, Vol. 6506. 403–414.
[17] V. Fomin Fedor and Kratsch Dieter. 2010. Exact Exponential Algorithms. Springer.
[18] Jian Gao, Jiejiang Chen, Minghao Yin, Rong Chen, and Yiyuan Wang. 2018. An Exact Algorithm for Maximum k-Plexes

in Massive Graphs. In IJCAI. 1449–1455.
[19] Jian Gao, Zhenghang Xu, Ruizhi Li, and Minghao Yin. 2022. An Exact Algorithm with New Upper Bounds for the

Maximum k-Defective Clique Problem in Massive Sparse Graphs. In AAAI. 10174–10183.
[20] Timo Gschwind, Stefan Irnich, and Isabel Podlinski. 2018. Maximum weight relaxed cliques and Russian Doll Search

revisited. Discret. Appl. Math. 234 (2018), 131–138.
[21] Shweta Jain and C. Seshadhri. 2020. Provably and Efficiently Approximating Near-cliques using the Turán Shadow:

PEANUTS. In WWW. 1966–1976.

[22] Hua Jiang, Dongming Zhu, Zhichao Xie, Shaowen Yao, and Zhang-Hua Fu. 2021. A New Upper Bound Based on Vertex

Partitioning for the Maximum K-plex Problem. In IJCAI. 1689–1696.
[23] Richard M. Karp. 1972. Reducibility Among Combinatorial Problems. In Complexity of Computer Computations. 85–103.
[24] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, Dandapani Sivakumar, Andrew Tompkins, and Eli Upfal. 2000.

The Web as a graph. In PODS. 1–10.
[25] Ailsa H. Land and Alison G. Doig. 2010. An Automatic Method for Solving Discrete Programming Problems. In 50

Years of Integer Programming 1958-2008 - From the Early Years to the State-of-the-Art. 105–132.
[26] R. M. R. Lewis. 2016. A Guide to Graph Colouring - Algorithms and Applications. Springer.
[27] Chu-Min Li, Hua Jiang, and Felip Manyà. 2017. On minimization of the number of branches in branch-and-bound

algorithms for the maximum clique problem. Comput. Oper. Res. 84 (2017), 1–15.
[28] Chu-Min Li, Zhiwen Fang, and Ke Xu. 2013. Combining MaxSAT reasoning and incremental upper bound for the

maximum clique problem. In ICTAI. 939–946.
[29] Chu Min Li and Zhe Quan. 2010. An Efficient Branch-and-Bound Algorithm Based on MaxSAT for the Maximum

Clique Problem. In AAAI. 128–133.
[30] Don R Lick and Arthur T White. 1970. k-Degenerate graphs. Canadian Journal of Mathematics 22, 5 (1970), 1082–1096.

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

206:26 Qiangqiang Dai, Rong-Hua Li, Donghang Cui, & Guoren Wang

[31] Guimei Liu and Limsoon Wong. 2008. Effective Pruning Techniques for Mining Quasi-Cliques. In ECML/PKDD,
Vol. 5212. 33–49.

[32] R. Duncan Luce. 1950. Connectivity and generalized cliques in sociometric group structure. Psychometrika 15, 2 (1950),
169–190.

[33] R. Duncan Luce and Albert D. Perry. 1949. A method of matrix analysis of group structure. Psychometrika 14, 2 (1949),
95–116.

[34] Fabrizio Marinelli, Andrea Pizzuti, and Fabrizio Rossi. 2021. LP-based dual bounds for the maximum quasi-clique

problem. Discret. Appl. Math. 296 (2021), 118–140.
[35] Benjamin McClosky and Illya V. Hicks. 2012. Combinatorial algorithms for the maximum k-plex problem. J. Comb.

Optim. 23, 1 (2012), 29–49.
[36] Zhuqi Miao and Balabhaskar Balasundaram. 2020. An Ellipsoidal Bounding Scheme for the Quasi-Clique Number of a

Graph. INFORMS J. Comput. 32, 3 (2020), 763–778.
[37] Robert J. Mokken et al. 1979. Cliques, clubs and clans. Quality & Quantity 13, 2 (1979), 161–173.

[38] Hannes Moser, Rolf Niedermeier, and Manuel Sorge. 2012. Exact combinatorial algorithms and experiments for finding

maximum k-plexes. J. Comb. Optim. 24, 3 (2012), 347–373.
[39] Kevin A. Naudé. 2016. Refined pivot selection for maximal clique enumeration in graphs. Theor. Comput. Sci. 613

(2016), 28–37.

[40] Foad Mahdavi Pajouh, Zhuqi Miao, and Balabhaskar Balasundaram. 2014. A branch-and-bound approach for maximum

quasi-cliques. Ann. Oper. Res. 216, 1 (2014), 145–161.
[41] Panos M Pardalos and Jue Xue. 1994. The maximum clique problem. Journal of global Optimization 4 (1994), 301–328.

[42] Grigory Pastukhov, Alexander Veremyev, Vladimir Boginski, and Oleg A. Prokopyev. 2018. On maximum degree-based

𝛾 -quasi-clique problem: Complexity and exact approaches. Networks 71, 2 (2018), 136–152.
[43] Jeffrey Pattillo, Alexander Veremyev, Sergiy Butenko, and Vladimir Boginski. 2013. On the maximum quasi-clique

problem. Discret. Appl. Math. 161, 1-2 (2013), 244–257.
[44] Jeffrey Pattillo, Nataly Youssef, and Sergiy Butenko. 2011. Clique relaxation models in social network analysis. In

Handbook of Optimization in Complex Networks: Communication and Social Networks. Springer, 143–162.
[45] Jeffrey Pattillo, Nataly Youssef, and Sergiy Butenko. 2013. On clique relaxation models in network analysis. Eur. J.

Oper. Res. 226, 1 (2013), 9–18.
[46] Eric M. Phizicky and Stanley Fields. 1995. Protein-protein interactions: methods for detection and analysis. Microbio-

logical reviews 59, 1 (1995), 94–123.
[47] Celso C. Ribeiro and José A. Riveaux. 2019. An exact algorithm for the maximum quasi-clique problem. Int. Trans.

Oper. Res. 26, 6 (2019), 2199–2229.
[48] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with Interactive Graph Analytics and

Visualization. In AAAI. 4292–4293.
[49] Ryan A. Rossi, David F. Gleich, and Assefaw Hadish Gebremedhin. 2015. Parallel Maximum Clique Algorithms with

Applications to Network Analysis. SIAM J. Sci. Comput. 37, 5 (2015).
[50] Pablo San Segundo, Alvaro Lopez, and Panos M. Pardalos. 2016. A new exact maximum clique algorithm for large and

massive sparse graphs. Comput. Oper. Res. 66 (2016), 81–94.
[51] Stephen B Seidman. 1983. Network structure and minimum degree. Social networks 5, 3 (1983), 269–287.
[52] Stephen B. Seidman and Brian L. Foster. 1978. A graph-theoretic generalization of the clique concept. Journal of

Mathematical sociology 6, 1 (1978), 139–154.

[53] Etsuji Tomita and Toshikatsu Kameda. 2007. An Efficient Branch-and-bound Algorithm for Finding a Maximum Clique

with Computational Experiments. J. Glob. Optim. 37, 1 (2007), 95–111.
[54] Etsuji Tomita, Sora Matsuzaki, Atsuki Nagao, Hiro Ito, and Mitsuo Wakatsuki. 2017. A Much Faster Algorithm for

Finding a Maximum Clique with Computational Experiments. J. Inf. Process. 25 (2017), 667–677.
[55] Etsuji Tomita, Yoichi Sutani, Takanori Higashi, Shinya Takahashi, and Mitsuo Wakatsuki. 2010. A Simple and Faster

Branch-and-Bound Algorithm for Finding a Maximum Clique. In WALCOM, Vol. 5942. 191–203.

[56] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. 2006. The worst-case time complexity for generating all maximal

cliques and computational experiments. Theor. Comput. Sci. 363, 1 (2006), 28–42.
[57] Svyatoslav Trukhanov, Chitra Balasubramaniam, Balabhaskar Balasundaram, and Sergiy Butenko. 2013. Algorithms

for detecting optimal hereditary structures in graphs, with application to clique relaxations. Comput. Optim. Appl. 56,
1 (2013), 113–130.

[58] Alexander Veremyev, Oleg A. Prokopyev, Sergiy Butenko, and Eduardo L. Pasiliao. 2016. Exact MIP-based approaches

for finding maximum quasi-cliques and dense subgraphs. Comput. Optim. Appl. 64, 1 (2016), 177–214.
[59] Gérard Verfaillie, Michel Lemaître, and Thomas Schiex. 1996. Russian Doll Search for Solving Constraint Optimization

Problems. In AAAI. 181–187.

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

Theoretically and Practically Efficient Maximum Defective Clique Search 206:27

[60] Jianxin Wang, Min Li, Youping Deng, and Yi Pan. 2010. Recent advances in clustering methods for protein interaction

networks. BMC genomics 11, 3 (2010), 1–19.
[61] Mingyu Xiao, Weibo Lin, Yuanshun Dai, and Yifeng Zeng. 2017. A Fast Algorithm to Compute Maximum k-Plexes in

Social Network Analysis. In AAAI. 919–925.
[62] Mihalis Yannakakis. 1978. Node- and Edge-Deletion NP-Complete Problems. In STOC. 253–264.
[63] Haiyuan Yu, Alberto Paccanaro, Valery Trifonov, and Mark Gerstein. 2006. Predicting interactions in protein networks

by completing defective cliques. Bioinform. 22, 7 (2006), 823–829.
[64] Yi Zhou, Shan Hu, Mingyu Xiao, and Zhang-Hua Fu. 2021. Improving Maximum k-plex Solver via Second-Order

Reduction and Graph Color Bounding. In AAAI. 12453–12460.
[65] David Zuckerman. 2006. Linear degree extractors and the inapproximability of max clique and chromatic number. In

STOC. 681–690.

Received January 2024; revised April 2024; accepted May 2024

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 206. Publication date: September 2024.

	Abstract
	1 Introduction
	2 Problem Definition
	3 A Novel Search Framework
	3.1 New Branch Reduction Rules
	3.2 New Pivot-Based Techniques
	3.3 Implementation of the Search Framework
	3.4 Complexity Analysis

	4 The Proposed Search Algorithm
	4.1 The Proposed Upper Bounds
	4.2 Finding a Heuristic Result
	4.3 The Proposed MDC Algorithm

	5 Experiments
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Related Works
	7 Conclusion
	Acknowledgments
	References

